Influence of lactic starters on sensory properties and shelf life of wara – a Nigerian (unripened) soft cheese

ABSTRACT
Objectives: The effect of lactic starter cultures on the sensory properties and shelf life of wara (an unripened soft cheese) was investigated.
Methodology and results: Pasteurized fresh milk samples were inoculated with selected lactic acid bacteria (1%) singly or in combination and fermentation was carried out using a modified traditional method. Proximate analysis showed that milk fermented with lactic starters had higher protein contents than that produced by natural fermentation. Samples produced using combined culture of Lactobacillus bulgaricus and L. plantarum had the highest protein content (29.5%) while the sample produced by natural fermentation had the lowest protein content (26.66%). The moisture content of the samples ranged between 26.64 and 32.09%. According to sensory evaluation report the samples produced with lactic acid bacteria were rated better than those produced by natural fermentation. In addition to this, the product produced with combined starter culture comprising of L. bulgaricus and L. plantarum was rated best in all the parameters tested. The pH of the wara samples ranged between 4.12 and 4.78 while the titratable acidity (TA) was between 0.119 and 0.143% during the storage period (96 h). The cheese produced with lactic acid bacteria had relatively low microbial counts as compared to the sample produced by natural fermentation after 96 h storage. The sample produced by natural fermentation showed signs of spoilage within 72 h of storage whereas samples produced with lactic acid bacteria were still in good condition till the end of storage (96 h).
Conclusion and application of findings: It is concluded that the use of combined starter culture of L. bulgaricus and L. plantarum leads to improvement in nutritional quality, acceptability and shelf life and thus should be used in preparation of wara.

Key words: Lactic acid bacteria, biopreservation, milk fermentation, wara, shelf life.

INTRODUCTION
Milk is one of the key sources of protein and others nutrients to consumers (Anderson & Sobieski, 1978). Milk proteins are ideal in that they are complete and have high essential amino acids composition. Although milk and its various derivatives form a vital human food, it also provides an excellent medium for the growth of many kinds of micro-organisms (Anderson et al., 1978). Examples of fermented milk products are yoghurt (Olubamiwa & Kolapo, 2008), nono...
(Adesokan et al., 2008a), wara (Ashaye et al., 2006) and cheese (Rodriguez et al., 2005; Cetinkaya & Soyutemiz, 2004).

Wara is a Nigerian soft white unripened cheese that originated from Fulani cattle rearers in the Northern part of the country (Ogundiwin, 1978). It is commonly produced by Fulani women from unpasteurized cow milk and sold along the major streets of Nigeria. Despite advances in science and technology in Africa, the production of fermented foods is still largely a traditional art associated with poor hygiene, inconsistent quality and short shelf life (Onyekwere et al., 1989). The traditional processing method for making wara does not take into cognizance quality control measures while unhygienic conditions of milking and processing of cheese make the risk of microbial contamination very high. These contribute not only to the short shelf life of the product but also more importantly to its potential health hazard (Ashaye et al., 2006). As a means of improving the quality and safety of fermented food products the use of lactic starter cultures in fermentation was suggested (Olasupo et al., 1995).

Lactic acid bacteria (LAB) convert milk and its products into other desirable foods (Litopoulos-Tzanetaki et al., 1993; Randazzo et al., 2002) and are also widely used to improve the flavour, nutritional quality and shelf life of fermented foods (Soomro et al., 2002, Ogunbanwo & Okanlawon, 2006; Adesokan et al., 2008b). The present work aimed to enhance the nutritional quality and shelf-life of wara using lactic acid bacteria.

MATERIALS AND METHODS

Milk samples: Fresh cow milk and wara samples for use were collected aspetically from Gaa Apaara, Oyo town, Oyo State, Nigeria. The samples were transported in cooler containing ice packs to the laboratory for immediate analysis.

Bacteria strains and cultures: Lactic acid bacteria (LAB) strains were isolated from wara samples. One gram of sample was added to 9ml of 0.85% (w/v) NaCl solution and homogenized. Isolation of LAB was selectively made from the dilutions 10⁻⁵ – 10⁻⁹ on MRS (de Mann et al., 1960) agar plates and incubated anaerobically at 30°C for 48 h. Repeated streaking of the isolates was done on fresh MRS agar plates to purify the cultures. LAB isolates were characterized using API 50CH strips and API 50CHL medium (API System, Biomerieux Sa, France), other biochemical tests were performed where necessary. The identity of the isolates was confirmed with reference to Bergey’s Manual of Determinative Bacteriology (Kandler & Weiss, 1986). The indicator organisms used for assaying antimicrobial activity of LAB were obtained from the Culture Collection of the Department of Biology, The Polytechnic, Ibadan, Nigeria. The indicator organisms were *Escherichia coli*, *Staphylococcus aureus*, *Bacillus cereus*, *B. subtilis* and *Proteus vulgaris*.

Antimicrobial activity of lactic acid bacteria: The method used to detect antimicrobial activity of LAB strains was a well diffusion assay as previously described by Adesokan et al. (2008b). The LAB strains with distinct and highest diameter of zones of inhibition were selected for evaluation as starter cultures.

Preparation of wara samples: Wara was prepared using a traditional method described by Ashaye et al. (2006) with modifications. The milk was pasteurized at 72°C for 20 s and then cooled to 40°C to enhance the activity of sodom apple proteinase enzyme (applied as described below) and the starter cultures. The pasteurized milk sample was inoculated with the selected lactic starters (1%) singly or in combination, with an uninoculated sample serving as control (Okagbue & Bankole, 1992). Then, sodom apple stem was crushed and the juice extracted (1% w/v) into a little quantity of the warm milk. The mixture was then heated to about 70°C for 20 min. The scum was then removed and wara cut into small pieces (50g) and allowed to drain for 2 minutes.

Physico-chemical analysis: pH of wara samples was measured with a standardized pH meter apparatus (Crison MicroPh, 2000). To determine the Titratable Acidity (TA) of wara, 1g of the prepared sample was weighed and homogenized in 9ml of distilled water. Two to three drops of phenolphthalein indicator was added to the mixture and this was titrated against 0.1M sodium hydroxide solution (Achi & Akobor, 1999). Proximate parameters such as protein, ash, fat, fibre, carbohydrate and moisture content were determined.
using standard procedures as described by AOAC (1990).

Sensory analysis: A 10-member panel of judges who are familiar with the products did sensory analysis of all wara samples produced. The judges evaluated the samples for appearance, taste, texture, colour, aroma and overall acceptability using a 5-point hedonic scale (where 5 = Excellent, 1 = Poor).

Shelf life study: Storage was done according to a modified traditional method described by Ashaye (2006). Wara samples were soaked in their whey inside sterile plastic containers and stored at ambient temperature (28±2 °C) for 5 days. During storage, changes in pH and TA were assayed as described above. For microbiological analysis 10 g of wara samples was homogenized in 90 ml sterile normal saline in a stomacher. The samples were serially diluted and appropriate dilutions were then plated on MRS agar, nutrient agar and MacConkey agar for enumeration of LAB, bacteria (aerobic and anaerobic) and coliform, respectively. The plates for LAB count were incubated anaerobically at 30 °C for 48 h; while the plates for viable count and coliform count were incubated at 30 °C for 24 h.

RESULTS

A total of fifty-two strains of lactic acid bacteria (LAB) belonging to *Lactobacillus* sp were isolated from different samples of wara. The main species were *Lactobacillus plantarum*, *L. bulgaricus*, *L. casei* and *L. fermentum*. The zones of inhibition ranged between 2 and 14mm (Table 1). The strains of *Lactobacillus* with highest zones of inhibition were selected as starter culture for production of wara. The proximate analysis of wara samples (table 2) revealed that all wara produced with lactic starter cultures had increased protein content (P ≤ 0.05) than wara produced with spontaneous fermentation (sample D). Sample (C) produced with combined starter culture comprising of *L. bulgaricus* and *L. plantarum* had the highest protein content (29.57%) while wara produced with natural fermentation had the lowest (26.66%). Sample D also had the highest moisture content (32.05%) while sample C had the lowest (26.64%).

Table 1: Antagonistic activity of *Lactobacillus* spp. metabolites against some indicator organisms.

<table>
<thead>
<tr>
<th>LAB isolates</th>
<th>Escherichia coli</th>
<th>Staphylococcus aureus</th>
<th>Bacillus cereus</th>
<th>Bacillus subtilis</th>
<th>Proteus vulgaris</th>
</tr>
</thead>
<tbody>
<tr>
<td>L. plantarum</td>
<td>12²</td>
<td>14</td>
<td>13</td>
<td>10</td>
<td>6</td>
</tr>
<tr>
<td>L. bulgaricus</td>
<td>7</td>
<td>12</td>
<td>11</td>
<td>10</td>
<td>8</td>
</tr>
<tr>
<td>L. fermentum</td>
<td>5</td>
<td>9</td>
<td>8</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>L. brevis</td>
<td>7</td>
<td>10</td>
<td>6</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>L. casei</td>
<td>4</td>
<td>8</td>
<td>5</td>
<td>7</td>
<td>2</td>
</tr>
</tbody>
</table>

LAB = Lactic acid bacteria; ²Data are diameter of inhibition zones in millimeters

Sensory evaluation (table 3) showed that the use of combined starter cultures (sample C) significantly (P ≤ 0.05) improved the appearance, taste, texture, colour, aroma as well as overall acceptability of the product with sample C being the most generally accepted (4.50) while wara produced without LAB was the least accepted (2.50).

The pH of wara samples during storage ranged between 4.12 and 4.78 after 96 h of storage (table 4). Moreover, changes in titratable acidity (TA) of the wara samples (table 5) were observed during storage showing a significant increase (P ≤ 0.05) ranging from 0.119 and 0.143% at the end of storage.

The viable counts to determine microbiological changes showed that fermented with lactic acid bacteria had relatively low microbial load compared to the fermented by natural fermentation. Also, the samples fermented with starter culture had significantly lower (P ≤ 0.05) coliform count than the sample fermented without lactic acid bacteria. The LAB count of the sample produced lactic starter culture was significantly higher (P ≤ 0.05) than that of the sample produced without starter culture. Also, wara sample produced with combined starter culture of *L. bulgaricus* and *L. plantarum* had the highest LAB count (log cfu/g) of 7.96 while the sample produced without LAB had the lowest (7.73) at the end of storage. During storage of wara, physical examination showed signs of spoilage within 72 hours of storage in sample produced without
LAB while samples produced with lactic culture were still in good condition until the end of storage (96h).

Table 2: Proximate analysis of wara – a Nigerian (unripened) soft cheese produced using various starter cultures.

<table>
<thead>
<tr>
<th>Sample</th>
<th>% Protein</th>
<th>% Fat</th>
<th>% Ash</th>
<th>% Fibre</th>
<th>% CHO</th>
<th>% M.C.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>27.62±0.02ab</td>
<td>25.30±0.01bc</td>
<td>4.75±0.03cd</td>
<td>3.24±0.02cd</td>
<td>8.49±0.03ae</td>
<td>30.570±1d</td>
</tr>
<tr>
<td>B</td>
<td>28.72±0.03ab</td>
<td>25.05±0.04bc</td>
<td>4.85±0.03de</td>
<td>3.67±0.01bd</td>
<td>11.00±0.02be</td>
<td>29.040±1d</td>
</tr>
<tr>
<td>C</td>
<td>29.57±0.03ab</td>
<td>25.18±0.02bc</td>
<td>4.55±0.01ce</td>
<td>3.16±0.02cd</td>
<td>8.49±0.05ce</td>
<td>26.640±2d</td>
</tr>
<tr>
<td>Control</td>
<td>26.66±0.01ab</td>
<td>25.20±0.02bc</td>
<td>4.63±0.03de</td>
<td>3.46±0.02dd</td>
<td>7.72±0.03bc</td>
<td>32.050±2d</td>
</tr>
</tbody>
</table>

Values are means (n=3) ± Standard Deviation. Means with different superscripts are significantly different along the rows and columns. **A = Wara sample produced with Lactobacillus bulgaricus; B = wara produced with L. plantarum; C = wara produced with a mixture of L. bulgaricus and L. plantarum; D = wara produced by spontaneous fermentation.**

Table 3: Sensory evaluation of wara – a Nigerian (unripened) soft cheese produced using various starter cultures.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Appearance</th>
<th>Taste</th>
<th>Texture</th>
<th>Colour</th>
<th>Aroma</th>
<th>Acceptability</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>3.50±0.52ab</td>
<td>3.75±0.75ab</td>
<td>3.50±0.51ac</td>
<td>3.50±0.67ab</td>
<td>3.58±0.51ae</td>
<td>3.75±0.45df</td>
</tr>
<tr>
<td>B</td>
<td>3.83±0.58ab</td>
<td>3.67±0.49ab</td>
<td>3.67±0.78bc</td>
<td>3.75±0.62ab</td>
<td>3.75±0.62be</td>
<td>3.92±0.29df</td>
</tr>
<tr>
<td>C</td>
<td>4.25±0.75ca</td>
<td>3.75±0.62ab</td>
<td>3.75±0.75bc</td>
<td>3.83±0.83cd</td>
<td>3.75±0.75ce</td>
<td>4.50±0.52df</td>
</tr>
<tr>
<td>Control</td>
<td>2.42±0.51da</td>
<td>2.50±0.52bc</td>
<td>2.42±0.51bc</td>
<td>2.50±0.67bd</td>
<td>2.83±0.58de</td>
<td>2.50±0.52df</td>
</tr>
</tbody>
</table>

*Values are means (n=3) ± Standard Deviation. Means with different superscripts are significantly different along the rows and columns. **Sample codes are as stated in table 2.*

DISCUSSION

The lactic acid bacteria isolated from wara samples belong to the genus Lactobacillus species. Members of this genus have been reported in milk and fermented milk products (Okagbua & Bankole, 1992; Oyewole, 1997; Sayadogo et al., 2004; Guessas & Khal, 2004). All the strains of Lactobacillus sp. demonstrated antimicrobial activity against the indicator organisms employed in the agar diffusion assay. Lactic acid bacteria have been reported to exhibit antagonistic activity against many pathogenic microorganisms (Harris et al., 1989; Rodriguez et al., 1997; Savagodo et al., 2004; Belfiore et al., 1993; Einarsson & Lauzon, 1995; Zalan et al., 2007).

The wara samples produced with lactic acid cultures had a better protein content than the one produced by natural fermentation. Furthermore, the wara produced with combined starter culture comprising of L. bulgaricus and L. plantarum had higher protein content than all other samples. Lactic acid bacteria are known to enhance nutritional quality of fermented food products (Capildeo et al., 1999; Onilude et al., 2002; Adesokan et al., 2008a).

The sensory properties of the wara produced with lactic acid bacteria were superior to that of wara produced by spontaneous fermentation. This could be due to flavouring compounds such as diacetyl and aceton produced by the lactic starter cultures (Okagbua & Bankole, 1992; Bassit et al., 1993; Boumerdassi et al., 1996, Boumerdassi et al., 1997).

During the five day storage of wara samples, a decrease in pH was observed with a corresponding increase in TA. This might be as a result of fermentation of the product during storage. The wara samples produced with starter cultures had lower microbial counts than wara produced by natural fermentation, possibly as a result of antimicrobial metabolites such as lactic acid, diacetyl, hydrogen peroxide and bacteriocin produced by the lactic starter cultures (Harris et al., 1989; Lewus et al., 1991; Bassit et al., 1993; Einarsson & Lauzon, 1995; Zalan et al., 2005; Veljovic et al., 2007). Furthermore, the shelf life of wara produced with lactic cultures was 96 hours while the one produced by natural fermentation was 72 hours. This agreed with the findings of Ogunbanwo et al. (2004) who extended the shelf life of fufu using bacteriocinogenic Lactobacillus spp.
Table 4: Changes in pH during storage of wara- a Nigerian (unripened) soft cheese produced using various starter cultures.

<table>
<thead>
<tr>
<th>Sample</th>
<th>0</th>
<th>24</th>
<th>48</th>
<th>72</th>
<th>96</th>
</tr>
</thead>
<tbody>
<tr>
<td>A**</td>
<td>5.96±0.02<sup>a</sup></td>
<td>5.74±0.04<sup>b</sup></td>
<td>4.92±0.02<sup>ac</sup></td>
<td>4.25±0.02<sup>ad</sup></td>
<td>4.12±0.007<sup>ae</sup></td>
</tr>
<tr>
<td>B</td>
<td>5.94±0.04<sup>ab</sup></td>
<td>5.83±0.06<sup>bc</sup></td>
<td>4.96±0.01<sup>bc</sup></td>
<td>4.28±0.03<sup>ad</sup></td>
<td>4.16±0.02<sup>ae</sup></td>
</tr>
<tr>
<td>C</td>
<td>5.45±0.66<sup>ca</sup></td>
<td>5.89±0.02<sup>cd</sup></td>
<td>5.00±0.007<sup>cc</sup></td>
<td>4.36±0.02<sup>cd</sup></td>
<td>4.21±0.01<sup>ce</sup></td>
</tr>
<tr>
<td>Control</td>
<td>6.07±0.007<sup>da</sup></td>
<td>5.25±0.02<sup>da</sup></td>
<td>5.12±0.01<sup>dc</sup></td>
<td>4.97±0.01<sup>dc</sup></td>
<td>4.78±0.01<sup>de</sup></td>
</tr>
</tbody>
</table>

*Values are means (n=3) ± Standard Deviation. Means with different superscripts are significantly different along the rows and columns. **Sample codes are as stated in table 2.

Table 5: Changes in titratable acidity (mg/100g) during storage of wara- a Nigerian (unripened) soft cheese produced using various starter cultures.

<table>
<thead>
<tr>
<th>Sample</th>
<th>0</th>
<th>24</th>
<th>48</th>
<th>72</th>
<th>96</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.028±0.001<sup>aa</sup></td>
<td>0.047±0.0003<sup>ab</sup></td>
<td>0.089±0.0002<sup>ac</sup></td>
<td>0.133±0.0002<sup>ad</sup></td>
<td>0.133±0.0003<sup>ae</sup></td>
</tr>
<tr>
<td>B</td>
<td>0.026±0.0002<sup>ab</sup></td>
<td>0.044±0.0002<sup>bc</sup></td>
<td>0.090±0.0007<sup>ac</sup></td>
<td>0.116±0.0002<sup>ad</sup></td>
<td>0.128±0.0002<sup>ae</sup></td>
</tr>
<tr>
<td>C</td>
<td>0.034±0.004<sup>ca</sup></td>
<td>0.053±0.0002<sup>cd</sup></td>
<td>0.085±0.0002<sup>cc</sup></td>
<td>0.109±0.0007<sup>cd</sup></td>
<td>0.119±0.0002<sup>ce</sup></td>
</tr>
<tr>
<td>Control</td>
<td>0.062±0.0001<sup>da</sup></td>
<td>0.083±0.0002<sup>da</sup></td>
<td>0.098±0.0001<sup>dc</sup></td>
<td>0.130±0.0001<sup>dc</sup></td>
<td>0.143±0.0002<sup>de</sup></td>
</tr>
</tbody>
</table>

*Values are means (n=3) ± Standard Deviation. Means with different superscripts are significantly different along the rows and columns. **Sample codes are as stated in table 2.

The findings of this study demonstrate that the use of lactic acid starter cultures improves the nutritional quality, acceptability and shelf life of wara. Use of such bacterial isolates should therefore be encouraged, more so in the communities that produce and consume wara more often, so that they can harness the benefits of using lactic acid starter cultures.

ACKNOWLEDGEMENTS: The authors wish to thank Avanrenren E.R and Clement J.B of the Department of Biology, The Polytechnic, Ibadan for technical assistance.

REFERENCES

