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ABSTRACT 
Objective: To analyze the enzymatic potential of the seeds of Lagenaria siceraria (round-fruited cultivar), an 
indigenous cucurbit that is an orphan crop, though widely cultivated and distributed in Côte d’Ivoire. 
Methodology and results: The seeds extract of L. siceraria round-fruited cultivar was screened using a 
variety of synthetic and natural substrates for hydrolytic enzymes activities. The best enzymatic hydrolysis 
mainly consisted of phosphatase (0.71 ± 0.02 UI/mg), β-galactosidase (0.31 ± 0.03 UI/mg) and α-
mannosidase (0.21 ± 0.02 UI/mg) activities. Physicochemical characterization showed that the three 
enzymatic activities were acidic (pH 4.6 – 5.6) and mesophilic (55°C). Also, they appeared to be stable in 
the presence of most cationic, non-ionic and anionic detergents as well as in the presence of cations (Na+, 
K+, Ca2+, Ba2+ and Mg2+) assayed. Substrate specificity showed that the seeds extract hydrolyzed a broad 
range of natural substrates such as adenosine-5’-triphosphate, pyrophosphate, phosphorylated sugars 
(glucose-1-phosphate, glucose-6-phosphate, fructose-1-phosphate and fructose-6-phosphate), lactose and 
the three differently linked (α-1,2; α-1,3; α-1,6) mannobioses. 
Conclusions and potential application of findings: The properties of the three enzymatic activities make 
them attractive for potential biotechnological applications. More investigations are proposed to characterise 
them further. 
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INTRODUCTION 
Cucurbits are among the most economically 
important crops worldwide and are grown in both 
temperate and tropical regions (Pitrat et al., 1999; 
Paris, 2001; Sanjur et al., 2002). In Sub-Saharan 

Africa, the indigenous species are prized for their 
oleaginous seeds that are consumed as thickeners 
of a traditional soup called egusi soup in Nigeria 
and Benin and pistachio soup in Côte d’Ivoire. 
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Cucurbits cultivated for seed consumption are 
reported to be rich in nutrients, namely protein 
(34.19 ± 0.85%) and fat (50.08 ± 1.23%) (De Mello 
et al., 2001; Enujiugha & Ayodele-Oni, 2003; Achu 
et al., 2005). There are also well adapted to 
extremely divergent agro-ecosystems and various 
cropping systems characterized by minimal inputs 
(IPGRI, 2002; El Tahir & Yousif, 2004).  

Lagenaria siceraria (Molina) Standl 
belongs to this category of crop, and is one of the 
most widely distributed and consumed in both rural 
and urban areas in Sub-Saharan Africa. Research 
towards promotion of this orphan or minor crop 
have focused primarily on agronomic evaluation, 
estimation of the amount of genetic diversity and 
determination of the degree of genetic 
differentiation (Zoro Bi et al., 2003, 2006). In spite 
of the nutritional and agronomic potentials and 
genetic diversities of L. siceraria, in-depth basic 
investigations on the crop are scant. For example, 
to our knowledge, no study has been devoted to 
analysis of the crops enzymes. Due to their wide 
application, enzymes have been investigated in 
eukaryotes from yeast to man. These 
investigations have demonstrated that some of the 
most desired enzymes are abundant constituent of 
plant systems (Ali et al., 1995; Ahi et al., 2007; 
Konan et al., 2008). 

Many roles have been ascribed to 
enzymes according to their substrate specificity. 
For example, acid phosphatases (orthophosphoric-
monoester phosphohydrolase EC 3.1.3.2) catalyze 
the hydrolysis of a broad and overlapping range of 
phosphomonoester and have been implicated in 

the release, transport and recycling of inorganic 
phosphate (Yoneyama et al., 2004). Furthermore, 
plant acid phosphatases have recently been 
reported to play a role in defence against 
herbivorous insects (Liu et al., 2005). Β-
galactosidase (or lactase) is used to increase the 
sweetening properties of lactose, and thus, it is 
used for the treatment of milk and its derivatives 
for consumption by people who have lactose 
intolerance (Patel & Mckenzie, 1985; Furlan & 
Schneider, 2000).  

In the past, most industrially used β-
galactosidase preparations for lactose hydrolysis 
were either from bacterial or fungal sources. 
However, Dey (1984) suggested that widely 
distributed plant β-galactosidases could be good 
substituted for industrial lactose hydrolysis due to 
their wider availability and lesser cost. As regards 
α-mannosidases, they are enzymes of great 
importance because of their physiological role and 
wide application, e.g. in the pharmaceutical 
industry, they are currently used for treatment of 
mannosidosis, a congenital disorder of glycoside, 
by enzyme replacement therapy (Sun et al., 1999; 
Hirsch et al., 2003). 

In search for new sources of enzymes, we 
have investigated the enzymes in seeds extract of 
a neglected crop, the round-fruited cultivar of L. 
siceraria. The seeds were previously described as 
an important staple food of high nutritional and 
economic values (Sanjur et al., 2002; Achu et al., 
2006).  This paper provides data on the enzymatic 
potential of this vegetable crop which could 
contribute to support in its promotion. 

 
MATERIALS AND METHODS 
Enzymatic source and enzymes extraction: Seeds of 
Lagenaria siceraria round-fruited cultivar were obtained 
from the collection of the University of Abobo-Adjamé 
(Abidjan, Côte d’Ivoire). To obtain sufficient number of 
seeds, L. siceraria round-fruited cultivar was grown 
during its appropriate cropping season (raining season 
from April to July) in 2008 at the experimental farm of 
the University (5°23N, 4°00 West, and 7 m above sea 
level). After harvesting, fruits were split using a 
stainless steel kitchen knife and the seeds removed for 
crude extract preparation. 

Cucurbit seeds (10 g) were ground using a 
blender in 20 ml sodium chloride solution 0.9% (w/v). 
The homogenate was subjected to sonication using a 
TRANSSONIC T420 for 10 min and then centrifuged at 
10,000 g for 30 min at 4°C. The supernatant filtered 
through cotton wool was used as the crude seed 
extract. 
Chemicals: para-nitrophenyl- (pNP-) glycopyranoside 
substrates (pNP-α-D-mannopyranoside (pNP-α-D-
Man), pNP-α-D-glucopyranoside (pNP-α-D-Glu), pNP-
β-D-glucopyranoside (pNP-β-D-Glu), pNP-α-D-
galactopyranoside (pNP-α-D-Gal), pNP-β-D-
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galactopyranoside (pNP-β-D-Gal), pNP-α-L-
fucopyranoside (pNP-α-L-Fuc), pNP-α-L-
arabinopyranoside (pNP-α-L-Ara), pNP-β-D-
xylopyranoside (pNP-β-D-Xyl)), para-nitrophenyl 
phosphate (pNPP), phenyl phosphate, sodium 
pyrophosphate, glucose-1-phosphate, glucose-6-
phosphate, fructose-6-phosphate, fructose-1-
phosphate, α-nicotinamide adenosine dinucleotide (α-
NAD), adenosine-2-3’-cyclomonophosphate, 
adenosine-5’-triphosphate (ATP), phytate, para-
nitrophenol (pNP), sucrose, starch, 
carboxymethylcellulose (CMC), Inulin, xylan, lactose, 2-
O-α-D-mannopyranosyl-D-mannopyranoside (α-1,2 
Mannobiose), 3-O-α-D-mannopyranosyl-D-
mannopyranoside (α-1,3 Mannobiose), 6-O-α-D-
mannopyranosyl-D-mannopyranoside (α-1,6 
Mannobiose), D-mannose and D-glucose were 
purchased from Sigma Aldrich. Bovine serum albumin 
(BSA) was from Fluka Biochemika. 
Screening hydrolytic effects of seeds extract on 
synthetic and natural substrates: For synthetic pNP-
glycoside and pNP-phosphate hydrolytic activities, the 
crude extract was mixed in a total volume of 250 µl 
composed of para-nitophenyl-glycoside substrate (5 
mM) in 100 mM sodium acetate buffer [pH 5.0] and 
crude extract (50 µl which correspond to 0.25 mg of 
proteins). The reaction mixture was incubated with 
shaking at 37°C for 10 min. The liberated para-
nitrophenol (pNP) was quantified 
spectrophotometrically at 410 nm under alkaline 
conditions (2% w/v, Na2CO3) and referenced to a 
standard pNP (absorbance as a function of 
concentration) curve obtained under similar conditions. 

For natural substrates hydrolysis, the total 
volume was 300 µl, composed of 50 µl of the crude 
extract, 125 µl of substrate (0.25% w/v, final 
concentration) in 100 mM sodium acetate buffer, pH 
5.0. The reaction mixture was incubated with shaking at 
37°C for 30 min. The reaction was stopped by adding 
150 µl of dinitro salicylic acid (DNS) and heating the 
resulting solution at 100°C for 5 min (Bernfeld, 1955). 
The liberated reducing sugars were quantified 
spectrophotometrically at 540 nm and referenced to 
standard glucose (absorbance as a function of 
concentration) curve obtained under similar conditions. 

All values were determined in triplicate. One 
unit of enzymatic activities in the two cases (synthetic 
and natural substrates) released 1 µmol of liberated 
product (pNP or reducing sugar) per min under the 
above conditions, respectively. The specific activity was 
expressed as µmol per min (UI) per mg of proteins. 

Estimation of protein concentration: The 
concentration of proteins was measured by the Folin 
ciocalteu method (Lowry et al., 1951) using BSA as the 
standard. 
pH and temperature optima: The effect of pH on 
enzymatic activities was determined by performing 
hydrolysis of para-nitrophenylphosphate, para-
nitrophenyl-β-D-galactopyranoside and para-
nitrophenyl-α-D-Mannopyranoside in a series of buffers 
(100 mM) at pH values ranging from 3.0 to 6.2. Sodium 
acetate buffer from pH 3.6 to 5.5 and sodium citrate 
buffer from pH 3.0 to 6.2 were used. The pH values of 
each buffer were determined at 25°C. 

The effect of temperature on phosphatase, β-
galactosidase and α-mannosidase activities was 
performed in 100 mM acetate buffer (appropriate pHs) 
over a temperature range of 30 to 80°C using pNPP, 
pNP-β-D-Gal or pNP-α-D-Man (5 mM) as substrates 
under the enzyme assay conditions. 
pH and temperature stabilities: The pH stability of 
each enzymatic activity was studied in a pH range of 
3.0 to 6.2 with 100 mM sodium citrate buffer. The 
buffers were the same as in the pH and temperature 
optima study described above. After 2 h pre-incubation 
at 25°C, residual activities were measured at 37°C for 
10 min by adding the substrate (pNPP, pNP-β-D-Gal or 
pNP-α-D-Man). Thermal inactivation was determined at 
37°C and at each enzymatic activity’s optimum 
temperature. Enzymes in appropriate buffers (pHs) 
were exposed to each temperature for 0 to 100 min. 
Aliquots were withdrawn at intervals and immediately 
cooled. For thermal denaturation tests, aliquots of the 
crude extract were preheated at different temperatures 
ranging from 30 to 80°C for 15 min. Residual activities 
determined in the three cases at 37°C under the 
enzyme assay conditions, were expressed as 
percentage activity of zero-time untreated enzymes 
(control). 
Effect of selected chemical agents: To determine the 
effect of various compounds (cations, chelating, 
sulphidryl specific and reducing agents and detergents) 
as possible activators or inhibitors of the enzymatic 
activities, the crude extract was pre-incubated at 37°C 
for 30 min with each compound and then, the activity 
was assayed under the enzyme assay conditions. 
Residual activities were expressed as percentage 
based on results of the control treatment without 
chemical agents.  
Characterization of hydrolytic specificity: Hydrolytic 
specificity was determined by separately incubating the 
seed extracts (50 µl which correspond to 0.25 mg of 
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proteins) with appropriate substrates for different times 
at 37°C in 100 mM sodium acetate buffer (each 
optimum pH). 

For hydrolytic specificity of phosphorylated 
substrates, the inorganic phosphate (Pi) produced by 
the phosphatase activity was quantified by the method 
of Heinonen and Lahti (1981). Glucose and galactose 
released from the hydrolysis of lactose (1 mM) and 

mannose liberated from different linked mannobioses (1 
mM) were visualized through TLC plates. Samples (3 
µl) were spotted for each mixture. TLC plates were run 
with butanol-acetic acid-water (9:3.75:2.25, v/v/v) and 
then developed with naphto-resorcinol in ethanol and 
H2SO4 20% (v/v). The sugar spots were visualized at 
110°C for 5 min. 

 
RESULTS AND DISCUSSION 
Enzymes are essential biocatalysts to metabolic 
processes of living organisms. Indeed, any loss of an 
enzymatic activity is irremediably followed by metabolic 
disorders, also called uninherited diseases (Noble & 
Bovey, 1997; Kranz et al., 2007). Interest in enzymes 
also lies in their application in food industry, agriculture 
and various biotechnological processes (Oehmig et al., 
2007; Betancor et al., 2008). In this respect, research 
on new enzyme sources with improved properties 
remains of topical interest. 
 
Screening of glycosidase and phosphatase 
hydrolytic activities: The seeds extract of L. siceraria 
round-fruited cultivar were screened over a variety of 
synthetic and natural substrates for hydrolytic 
enzymatic activities. The crude enzyme extract 
contained a number of hydrolases (Fig. 1) and the 
activities of phosphatase, α-D-galactosidase, β-D-
galactosidase, α-D-mannosidase, β-D-glucosidase, α-
L-arabinosidase, amylase, inulinase and xylanase were 
detectable. Among these activities, phosphatase 
activity appeared to be the predominant one with a 
specific activity of 0.71 ± 0.03 UI/mg followed by β-
galactosidase (0.31 ± 0.02 UI/mg) and α-mannosidase 
(0.21 ± 0.02 UI/mg) activities (Fig. 1). Higher 
phosphatasic, β-galactosidasic and α-mannosidasic 
activities may be a good indicator of the present 
phosphorus, mannoside and galactoside-rich moieties 
such as phospho-, galacto- and manno- conjugates. 
Considering their specific activities, these hydrolasic 
activities were found to be higher than those already 
reported for plants and other sources, which were 
considered for purification nevertheless (Li et al., 2001; 
Ahi et al., 2007; Konan et al., 2008). Therefore, seeds 
of the round-fruited cultivar of L. siceraria appeared to 
be a promising alternative source of phosphatase, β-
galactosidase and α-mannosidase.  

Phosphatases are involved in the metabolic 
processes of germination and maturation of plants 
(Gonnety et al., 2006) while β-galactosidase is often 
associated with fruit ripening processes (Lazan et al., 

2004; Balasubramaniam et al., 2005). Plant β-
galactosidases have previously been reported to play 
important roles in the metabolism of galactosyl 
conjugates during carbohydrate reserve mobilization, 
cell wall expansion and degradation, and turnover of 
signalling molecules during ripening (Esteban et al., 
2003; De Alcantara et al., 2006).  α-mannosidases are 
key enzymes widespread in nature, and found in all 
eukaryotes from yeast to man (Tatara et al., 2003; 
Tremblay et al., 2007). They are involved in the 
processing of newly formed N-glycans by modifying 
oligosaccharide structures linked to appropriate 
asparagine residues of proteins, and thus influence 
their properties and bioactivity (Moremen et al., 1994; 
Akama et al., 2006). 
 
 
pH and temperature dependences: The effect of pH 
and temperature on phosphatase, β-galactosidase and 
α-mannosidase activities is shown in Figure 2. The 
three enzymes were optimally active in acidic pH 
ranging from pH 4.6–5.6 and at 55°C (Figs. 2A and 3). 
This behaviour is in accordance with the majority of 
plant acid phosphatase, β-galactosidase and α-
mannosidase activities reported previously (Ali et al., 
1998; Gonnety et al., 2006; Ahi et al., 2007). At 37°C, 
these activities showed best stability over pH values 
ranging from 4.0 to 5.8 by conserving at least more 
than 80% of total activities (Fig. 2B). This stability is 
suitable and desirable as a good compromise for 
performing hydrolysis or synthesis reactions. Values of 
temperature coefficients (Q10) calculated were around 
1.8 for phosphatase and α-mannosidase activities and 
1.5 for β-galactosidase activity. From Arrhenius plot 
(data not shown), values of 50.8, 35.1 and 34.4 kJ/mol 
were obtained for the activation energy of phosphatase, 
β-galactosidase and α-mannosidase activities, 
respectively. 

The thermal denaturation test showed that 
phosphatase, β-galactosidase and α-mannosidase 
activities were fairly stable at temperatures up to 50°C. 
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At higher temperatures, hydrolytic activities decreased 
sharply (Fig. 4A). The thermal inactivation study 
indicated that at 37°C and at each optimum pH value, 
the three enzymatic activities remained fully stable for 
100 min. However at 50°C (optima temperatures), they 
were less stable and retained about 80% of their 
activity after 40 min pre-incubation. Half-lives (50% of 
activity) of phosphatase and α-mannosidase activities 

were respectively obtained at 80 and 100 min pre-
incubation while β-galactosidase retained about 60% of 
its activity after 100 min (Fig. 4B). These residual 
activities indicate a good potential for performing 
hydrolysis reactions using phosphatase, β-
galactosidase and α-mannosidase from seeds of the 
round-fruited cultivar of Lagenaria siceraria. 

 

 

Figure 1: Screening of the seeds extract from the round-fruited cultivar of Lagenaria siceraria for glycosidase and 
phosphatase activities over synthetic and natural substrates. 
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Figure 2: Effect of pH on phosphatase, β-galactosidase and α-mannosidase activities from the seed extracts of the 
round-fruited cultivar of Lagenaria siceraria. (A) Optimum pH. (B) pH stability. 
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Figure 3: Effect of temperature on phosphatase, β-galactosidase and α-mannosidase activities from the seed 
extracts of the round-fruited cultivar of Lagenaria siceraria. 
 
Effect of cations, chelating, sulphidryl specific and 
reducing agents: Phosphatase activity was slightly 
stimulated by Mg2+ (112.1 ± 4.0%) while β-
mercaptoethanol (5 mM) inhibited by around 13% (Figs 
5 & 6). The stimulatory effect displayed by Mg2+ has 
previously been reported for various plant acid 
phosphatases (Bozzo et al. 2002; Gonnety et al. 2006). 
As regards α-mannosidase activity, Ba2+, EDTA and 
urea were found to be inhibitory in the range of 22 to 
26% (Fig. 5). These results suggest that this enzyme 
requires divalent metal cations to be fully active. Α-
Mannosidase containing other binuclear metal centers 
has already been reported in Drosophila melanogaster 
(Van Den Elsen et al., 2001). Β-galactosidase activity 
was inhibited by pCMB by around 23% (Fig. 6), which 
suggests that –SH groups participate in this enzymatic 

reaction. The other chemicals tested had little or no 
effect. 
 
Effect of detergents: Except SDS that displayed a 
strong inhibitory effect (between 66 and 96%) on 
phosphatase, β-galactosidase and α-mannosidase 
activities, most of the detergents currently used for 
denaturing proteins showed, by and large, no 
pronounced effect on the three enzymatic activities 
(Table 1). However, non-ionic detergents (Tween 80, 
Lubrol Wx and Triton X-100) and anionic detergents 
(polyoxyethylene 9 lauryl ether and polyoxyethylene 10 
oleyl ether) enhanced phosphatase hydrolytic activity 
up to 117.4 ± 4.9%. Β-galactosidase activity was also 
activated by cationic detergents up to 112.9 ± 4.3%.. 
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Figure 4: Thermal stability of phosphatase, β-galactosidase and α-mannosidase activities from the seed extracts of 
the round-fruited cultivar of Lagenaria siceraria. (A) Thermal denaturation. (B) Thermal inactivation. 
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Therefore, these detergents should be used in these 
enzymes preparations. Cationic detergents were found 
to be inhibitory to α-mannosidase activity by between 
13 and 23% (Table 1). By and large, the stability of the 
three enzymatic activities in the presence of detergents 
constitutes an interesting characteristic for their 

potential industrial application. In addition, the identified 
detergents could be particularly useful when extracting 
these enzymes by improving their stability for further 
specific studies. 

.

 

 

Figure 5: Effect of cations, chelating agent and urea on phosphatase, β-galactosidase and α-mannosidase activities 
from the seed extracts of the round-fruited cultivar of Lagenaria siceraria. 
 
Substrates hydrolytic specificity: Phosphatase, β-
galactosidase and α-mannosidase activities from the 
seeds extract of Lagenaria siceraria round-fruited 
cultivar were assayed for their capabilities to hydrolyze 
different specific substrates.  Phosphatase activity 
hydrolyzed a broad range of phosphorylated substrates 
(Table 2). The highest activity (116.5 ± 2.1%) was 
observed with adenosine-5’-triphosphate (ATP) 
followed by p-nitrophenylphosphate (100.0 ± 1.6%), 
sodium pyrophosphate (77.8 ± 1.9%) and 
phenylphosphate (77.6 ± 2.4%). A higher rate of ATP 
and pyrophosphate hydrolysis by plant phosphatases 

was recently observed in sweet potato (Kusudo et al., 
2003) and breadfruit (Artocarpus communis) seeds 
(Konan et al., 2008).  

Also, phosphorylated sugars such as glucose-
1 or 6-phosphate and fructose-1 or 6-phosphate were 
hydrolyzed in the range of 19.1 ± 2.3% to 44.7 ± 3.1% 
(Table 2). The hydrolysis of phosphate esters is an 
important process in energy metabolism and a wide 
variety of cellular signal transduction pathways of plant 
cells (Vincent et al., 1992). These observations showed 
that phosphatase activity from L. siceraria round-fruited 
cultivar seeds play an important role during seed 
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ripening. This acid phosphatase activity seemed to be 
involved in energy transfer, release of inorganic 
phosphate (Pi) and other reserve materials during fruit 
and seed ripening. 

Hydrolysis of the two latter substrates 
remained interesting compared to that of sodium 
phytate (14.6 ± 2.8%) and α-nicotinamide adenine 
dinucleotide (12.9 ± 2.1%) which were less specific 
(Table 2). Clearly, sodium phytate hydrolysis showed 
proof of an efficient acid phosphatase activity from L. 
siceraria round-fruited cultivar seeds. Indeed, this 

enzyme could cleave phosphate moieties from phytic 
acid (myo-inositol-hexakisphosphate) present in 
cucurbits seeds, thereby generating myo-inositol, 
inorganic phosphate and some multivalent cations. It is 
well known that phytic acid (phytate) chelates 
multivalent cations and some proteins, rendering them 
biologically unavailable to animals (Harland & Morris, 
1995). Furthermore, myo-inositol via this oxidation 
pathway, is directed to cell wall polysaccharide 
biosynthesis (Loewus & Murthy, 2000), thus is 
important for cell wall elongation and growth.

 
Table 1: Effect of detergents on phosphatase, β-galactosidase and α-mannosidase activities from the seed extracts 

of the round-fruited cultivar of Lagenaria siceraria (Cucurbitaceae). 

Relative activity (%) 

Detergents* 

Phosphatase β-Galactosidase α-Mannosidase 

Control 100 100 100 

Cationic    
   Tetradecyl Trimethyl Ammonium Bromide 104.2 ± 3.5 112.9 ± 4.3 87.5 ± 3.7 

   Hexadecyl Trimethyl Ammonium Bromide 102.9 ± 4.2 112.4 ± 3.6 77.4 ± 4.1 

Non ionic    

   Tween 80 114.5 ± 3.7 98.2 ± 2.5 95.9 ± 3.2 

   Lubrol Wx 117.4 ± 4.9 98.7 ± 3.1 97.7 ± 3.3 

   Triton X-100 108.6 ± 3.2 96.8 ± 4.2 92.7 ± 4.5 

Anionic    

   Polyoxyethylene 9 lauryl ether 111.6 ± 5.1 98.7 ± 3.3 95.5 ± 4.9 

   Polyxyethylene 10 tridecyl ether 100.0 ± 3.9 96.3 ± 4.7 97.2 ± 4.3 

   Polyxyethylene 10 oleyl ether  116.0 ± 5.4 98.4 ± 4.6 95.7 ± 5.1 

   Sodium dodecyl sulphate 3.8 ± 1.1 33.5 ± 3.4 15.5 ± 3.6 

*Assays were performed at 37°C for 10 min with 1% (w/v) starting concentration of detergent 
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Figure 6: Effect of reducing agents on phosphatase, β-galactosidase and α-mannosidase activities from the seeds 
extract of the round-fruited cultivar of Lagenaria siceraria. 
 
Figure 7A shows the ability of the seeds extract of L. 
siceraria round-fruited cultivar to hydrolyze lactose.  
The presence of glucose and galactose (products of 
lactose hydrolysis) were noted in the mixture and the 
remaining lactose concentration was very small. As a 
result, lactose is greatly hydrolyzed by β-galactosidase 
activity. This is an interesting property of a β-
galactosidase activity for industrial and biotechnological 
applications. Indeed enzymatic hydrolysis of lactose by 
β-galactosidase has two main biotechnological 
applications; the utilization of whey, as glucose and 
galactose (the hydrolysates) having greater 
fermentation potential (Kosaric & Asher, 1985) and in 
the production of low lactose milk (and dairy products 
made from it) for consumption by lactose intolerant 
persons (Kretchmer, 1972). In the same way, β-
galactosidase (or lactase) is used for the treatment of 
milk, for prevention of lactose crystallization in frozen 
and condensed milk products and also for the reduction 
of water pollution caused by whey (Patel & Mackenzie, 
1985; Furlan & Schneider, 2000). 

Thin layer chromatography analysis of the 
hydrolysis of natural substrates such as α-1,2; α-1,3 
and α-1,6 mannobioses by α-mannosidase activity 
Showed that the three differently linked disaccharides 
were cleaved at different rates showing a broad specific 
α-mannosidase activity (Fig. 7B). However, this 
hydrolytic activity on α-1,2 mannobiose seemed to be 
greater than that on the two other linkages. Broad 
specific α-mannosidases are thought to be very 
important and are reported to be involved in cleaving 
the carbohydrate moieties of glycoproteins. Lysosomal 
α-mannosidases with these characteristics have 
previously been identified from several sources, e.g 
Dictyostelium discoideum (Schatzle et al., 1992) and a 
variety of mammalian tissues (Opheim & Touster, 1978; 
De Gasperi et al., 1991). Our results, together with the 
previous findings (Saint-Pol et al., 1999; Hirsch et al., 
2003), suggests that the major potential application of 
this enzyme would be in treatment  of the lysosomal 
storage disorder α-mannosidosis by enzyme 
replacement therapy. Indeed, α-mannosidosis results 
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from deficient activity of α-mannosidase. This disease 
is characterized by massive intracellular accumulation 
of mannose-rich oligosaccharide, that is 
oligosaccharides carrying α-1, 2; α-1,3 and α-1,6 
mannosyl residues at the non-reducing termini. In this 
respect, the broad specific α-mannosidases become 
useful for application requiring removal of all α-
mannosyl linkages. 
 
CONCLUSION 
To sum up this report, we can note that phosphatase, 
β-galactosidase and α-mannosidase activities are 
predominant in the seeds extract of Lagenaria siceraria 
round-fruited cultivar. These three enzymatic activities 
were acidic (pH 4.6 – 5.6) and mesophilic (55°C) and 
appeared to be stable in the presence of most 

detergents. Furthermore, they hydrolyzed a broad 
range of natural substrates such as ATP, sodium 
phytate, lactose and mannobioses. Based on the 
results of the present study, we conclude that seeds of 
Lagenaria siceraria round-fruited cultivar constitute an 
interesting source of phosphatase(s), β-
galactosidase(s) and α-mannosidase(s) that deserve 
further investigation for potential industrial and 
biotechnological applications. 
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Table 2: Hydrolytic activity of the seed extracts of the round-fruited cultivar of Lagenaria siceraria on a variety of 
phosphorylated substrates. 

Substrates* Hydrolytic activity (%) 

p-Nitrophenylphosphate (Control) 100.0 ± 1.6 

Phenylphosphate 77.6 ± 2.4 

Adenosine-5’-triphosphate 116.5 ± 2.1 

Adenosine-2’3’-cyclomonophosphate 24.4 ± 3.2 

α-Nicotinamide adenine dinucleotide 12.9 ± 2.1 

Sodium pyrophosphate 77.8 ± 1.9 

Glucose -1-phosphate 19.1 ± 2.3 

Glucose -6-phosphate 44.7 ± 3.1 

Fructose-1-phosphate 24.5 ± 2.1 

Fructose-6-phosphate 43.5 ± 2.2 

Sodium phytate** 14.6 ± 3.8 

*Assays were performed at 37°C for 30 min with 5 mM final concentration of substrate; **This reaction was performed 
at 50°C for 2 h 
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Figure 7: TLC plates showing β-galactosidase and α-mannosidase activities from the seed extracts of the round-
fruited cultivar of Lagenaria siceraria towards differently linked disaccharides. (A) β-galactosidase activity on lactose: 
Lane 1, glucose; lane 2, galactose; lane 3, lactose, lane 4, reaction mixture with lactose. (B) α-mannosidase activity 
on α-1,2; α-1,3 and α-1,6-mannobioses: lane 1, crude extract; lane 2, mannose; lane 3, mannobiose, lanes 4-6, 
reaction mixtures with α-1,2; α-1,3 and α-1,6-mannobiose, respectively.  
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