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1 SUMMARY 
In this study, Klason lignin (KL) biodegradation of wheat straw (WS) by Pleurotus eryngii 
(DC. ex Fr.) Quel. under solid state fermentation  (SSF) was studied. Besides, in this study 
the effects of the addition of different rates (5, 10% w/w) of rice bran (RB) on studied 
parameters (lignin degradation, total protein level, Carbon/Nitrogen (C/N)ratio, Sulphur 
(S) level) were investigated. Klason lignin degradation was followed during different growth 
periods of cultivation, such as spawn running, primordia initiation and fruit body yield. 
crude protein levels were determined, C:N alteration, and C, N and S levels of spent 
substrate. While substrate initially contained 21.33% klason lignin the maximum lignin loss 
of 46.63±0.18%, occurred on WS without RB. Nonfermented wheat straw initially cointaned 
2.43% crude protein and  after incubation this levels increased to 6.48±0.77%. It was also 
observed that addition of different concentration of rice bran revealed statistically (P<0.05) 
different results in the studied parametres. Efficiency of this fungus under the solid-state 
fermentation on high value ruminant food production is discussed. 

 
 
2 INTRODUCTION 
White Rot Fungi (WRF) are a physiological 
group comprising of fungi that are capable of 
biodegrading lignin. The name white rot is 
derived from the white appearance of the wood 
attacked by WRF, where lignin removal gives a 
bleached appearance (Pointing, 2001). 
Taxanomically, WRF are mostly 
basidiomycetes, although few ascomycetes are 
also capable of white-rot decay (Eaton & Hale, 
1993). White-rot fungi have powerful lignin 
degrading enzymes that enable them in nature 
to bridge the lignin barrier and, hence, 
overcome the rate-limiting step in the carbon 

cycle (Elder & Kelly, 1994). The Pleurotus eryngii 
belongs to the family of oyster mushrooms 
(Pleurotaceae) The wild species of Pleurotus eryngii 
(Pleurotus eryngii/ De CANDOLLE ex FRIES) 
can be found in large areas of  Europe. Its 
natural habitat is on the dead root of the weed 
Eryngium campestre. Its common name 
originated from it also. It can be collected from 
the wild between October and December but 
rarely in early spring (Gyôrfi & Hajdú, 2007).  
Lignin is a highly branched polyphenolic, 
amorphous polymer with wide range of 
functional groups consisting of phenyl 
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propanoid monomers of coniferyl, sinapyl, and 
p-coumaryl alcohols (Dence & Lin, 1992; 
Chang & Chang, 1995). Sadly, much of the 
lignocellulose waste is often disposed of by 
biomass burning, which is not restricted to 
developing countries alone, but is considered a 
global phenomenon (Levine, 1996). Ligno-
cellulosic crop residues represent a potential 
source of dietary energy for ruminants. These 
residues are characterised by high percentages 
of cellulose and hemicellulose, but are poor in 
protein content. This limits their utilisation as 
an ideal animal feed. In addition, they pose 
poor digestibility and poor palatability. In order 
to improve their utilisation, it is necessary to 
improve their nutritional quality. This could be 
achieved using several physical, chemical and 
microbial methods (Singh et. al., 1996). Since 
physical and chemical methods are energy 
intensive and are expensive, focus then has 
been made on developing microbial methods. 
SSF has been termed potential for this 
(Balagopalan, 1996; Bano et al., 1996).  
SSF is generally defined as the growth of 
microorganisms on solid materials in the 
absence or near absence of free water (Pandey, 
1992). SSF has been usually exploited for the 
production of value-added products 
(antibiotics, alkaloids, plant growth factors, etc), 
biofuel, enzymes, organic acids, aroma 
compounds and also for bioremediation of 
harzardous compounds, biological 
detoxification of agroindustrial residues, 
nutritional enrichment, biopulping, 
biopharmaceutical products, etc. (Pérez-Guerra 
et al., 2003). 
 Lignin, which physically and chemically forms 
a complex with cellulose and hemicellulose, 
makes the polysaccharides less accessible to 
ruminal microbial digestion by blocking access 
to rumen bacteria and their enzymes 
(Karunanandaa et al., 1995). Moreover, ruminal 
microbial populations do not possess 
ligninolytic activity (Zadrazil et al., 1995). 
Hence, partial delignification of lignocellulosic 
feeds may promote feed intake and animal 

productivity. Microbiological delignification is 
required to be a less energy consuming process 
where the amount of carbohydrate 
consumption by the organisms needs to be 
minimum in respect of delignification rate. This 
method has now become popular for 
improving the nutritional qualities of ruminant 
feed especially proteins and sugars as well as its 
digestibility, thereby upgrading the economic 
value of lignocellulosic waste (Zadrazil & 
Brunnert, 1982; Kamra et al., 1993; Dhanda et 
al., 1994; Reid, 1995). 
The problem of increasing the utility of 
lignocellulose wastes has been known for 
decades. In addition to the growing demand for 
traditional applications (paper manufacture, 
biomass fuels, composting, animal feed, etc.) 
novel markets for lignocellulosics have been 
identified in recent years. The intensity of 
research and the magnitude of capital 
investment in this field increased vastly once 
commercial viability seemed probable for many 
of new applications. (e.g. fuel ethanol, acetone 
and butanol)  (Kaylen et al., 2000; Lee, 1997; 
Wheals et al., 1999). 
Cellulose is the most important source of 
carbon and energy in a ruminant’s diet, 
although the animal itself does not produce 
cellulose-hydrolyzing enzymes (Czerkowski, 
1986). Rumen microorganisms utilize cellulose 
and other plant carbohydrates as their source of 
carbon and energy. Thus, the microorganisms 
convert the carbohydrates in large amounts of 
acetic, propionic and butyric acids, which the 
higher animal can use as its energy and carbon 
sources (Colberg, 1988). The concept of 
preferential delignification of lignocellulose 
materials by white-rot fungi has been applied to 
increase the nutritional value of forages (Akin, 
et al., 1995; Zadrazil & Isikhuemhen, 1997). 
This increased digestibility provides organic 
carbon that can be fermented to organic acids 
in an anaerobic environment, such as the 
rumen. 
These wastes could be put into appropriate use 
in order to reduce environmental hazard and 
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pollution. In this study, P. eryngii was studied for 
its  ability to bioconvert  owheat straw into 

high-value ruminant food additives. 

 
3 MATERIALS AND METHODS 
3.1 Fungal strain: Pleurotus eryngii (DC.ex Fr.) 
Quel. Was obtained from the culture collection of 
Hacettepe University, Department of 
Biotechnology, Ankara, Turkey. Pleurotus eryngii is a 
known wood-degrading fungus. Cultures were 
grown on malt extract agar (MEA; Merck) at 25ºC 
in the dark for 8 days before being transferred for 
specific assays. 
3.2 Spawn preparation : One kg wheat grain 
was used for spawn production. The grain was 
cooked for 40 min and washed in tap-water.The 
grain was drained and supplemented with 2 g lime  
and 8 g gypsum and mixed manually. Then, 120 g of 
grain, cooked and supplemented, was placed in 
erlenmayer flask (250 ml), closed and sterilized in an 
autoclave at 121 ºC, for 15 min. After cooling, each 
erlenmayer flask  was inoculated with two agar disks 
of 6 mm diam., containing mycelium (actively 
growing mycelial growth on MEA plates), and 
incubated at 25 ºC in full darkness for two weeks. 
3.3 Experimental design: In this study wheat 
straw that are usually burned or left in the field to 
rot in Diyarbakir, Turkey was used as a main 
material for cultivation of P. eryngii and it was 
obtained from Dicle University campus area. Wheat 
straw ,cut into pieces (5–10) cm long was soaked 
overnight in tap water (control). The straw was then 
mixed with rice bran (RB) at a ratio of 5 and 10% 
(w/w), and then in order to obtain the desired pH 
values (5.5-6.5), for one kg material, 35 g of lime 
and 35 g of gypsum was added.. For each ratio of 
RB three replicates were prepared. Polypropylene 
bags (height 18 cm, diameter 15 cm) were filled with 
1.2 kg of substrate . They were sterilized once for 
45 min at 121◦C and allowed to cool down to 23 oC 
in a dark room. All substrates were then under 
aseptic conditions inoculated vertically with 3% 
(w/w) spawn using a sterile metal pipe. 
3.4 Cultivation conditions : The tightly 
closed bags were then incubated in a cultivation 

room maintained at 25 ± 1◦C and relative humidity 
85 ± 5%. During the  mycelial growth phase the 
bags were neither aerated nor illuminated. After the 
substrate was fully colonised at about 23 days 
(spawn running) the bags were opened and  then 
incubated at 20 ± 2◦C with  a light intensity of 600 
lux/m2 for 12 h/day by fluorescent lamps. After the 
primordium formation, the CO2 level was 
maintained around 1000 ppm by aeration. 
3.5 Lignin Degradation : The samples, taken 
from the bags periodically (spawn running, 
primordia initiation, and fruit body yield phases) 
consisted of 3 g of substrate colonized with 
mycelium.They  were oven dried at 60 oC for 24 h. 
For preparation of chemical analyses the dried 
sanmples were ground in a polymix laboratory mill 
(Kinematica, Germany). For lignin analyses, test 
methods of the Technical Association of the Pulp 
and Paper Industry TAPPI, (1998) were utilized. 
Lignin content was determined according to TAPPI 
standard T222 om-88. In this method lignin is 
obtained by treating the sample with 13.5M 
sulphuric acid. The polysaccharides are hydrolyzed, 
and lignin, as Klason lignin, is recovered as an 
insoluble residue. 
Lignin Degradation (%)  : 100 x (Lx- Ly)/Lx 

Lx : Lignin content of unfermented substrate 
Ly :  Lignin content of spent substrate 
 
3.6 Crude Protein, C/N ratio 
Determination : Amounts of C, N, S and crude 
protein of spent substrate were determined in a 
elemental analyzer Leco CHNS-932. Crude protein 
was calculated as N X 6.25 (Diez & Alvarez, 2001). 
3.7 Statistical analyses : The experimental 
design was completely randomized with 3 
replications. Data was statistically analyzed for 
standard error. Means were calculated and Duncan’s 
new multiple range test was used to compare the 
groups (WS, WS+5%RB, and WS+10%RB). 

 
4 RESULTS AND DISCUSSION 
4.1 The effect of RB on Lignin degradation: 
Lignin degradation of WS by P. eryngii fermentation 
are given in Table 2. When total lignin degradation 
at WS medium was 46.63%, at WS+5%RB and 

WS+10%RB medium were determined as 46.02% 
and 39.95% respectively. From this study, it was 
observed that the addition of RB as a nitrogen 
source to fermentation medium inhibited lignin 
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degradation, especially at high concentration 
(10%RB). Similarly, Reid (1989) was reported that 
N addition generally leads to repression of lignin 
degredation. 
The KL content decreased in the course of the 
experiment, showing that lignin was degraded 
(Table 2). Lignin degradation over the entire growth 
periods reached 46.63%. These values are in the 
range of previously reported values of 46% lignin 
degradation of horticultural plant residues by pure 
cultures of Phanerochaete flavido-alba (Lopez et al., 
2006) and 32% degradation of the insoluble lignin 
component by Streptomyces badius (Borgmeyer & 
Crawford, 1985). 
Lignocellulosic materials posses lignin as barrier to 
rumen microorganisms, this complex molecule is 
unable to serve them as the sole carbon and energy 
source (Kirk et al., 1976). One of the goals of 
biological delignification using white-rot fungi is to 
make as much possible of the digestible substrate 
carbohydrate (Adenipekun & Fasidi, 2005).  
The changes in pH values of the P. eryngii 
fermentation wheat straw as the period of 
fermentation increased may be linked to the 
increase in metabolic products within the substrates. 
Fungal growth has been known to cause changes in 
pH of the straw mycelium (Zadrazil, 1977). 
4.2 Changes in crude protein, C/N ratio, 
and ingredient elements: The crude protein 
content of the fermented spent substrate showed an 
increase at WS+5%RB and WS+10%RB groups 
reaching maximum values (5.94±0.37) (Figure 1). 
However, it decreased at WS group, probably from 
proteolysis and also due to a higher increase of 
biological efficiency during cultivation. Similar 
change in crude protein content in paddy straw 
during cultivation of P. florida was reported by 
Dhanda et al., (1996). 
The initial C/N ratio of the substrates were 98.04 
(Table 1), and increased to 135.73 at WS group, and 
decreased to 37.98 and 42.41 at WS+5%RB and 
WS+10%RB groups after incubation, respectively 
(Table 3). C (Carbon) rate of substrate was 
decreased, N (Nitrogen) and S (Sulphur) rates of 
substrate were increased by fungal fermentation 
(Table 3). Similarly, Dilly et al., (2001) and 
Ballaminut & Matheus, (2007) were reported that 

C/N ratio of substrate was decreased by fungal 
fermentation. 
Zadrazil et al., (1996) reviewed bioconversion of 
lignocellulose into protein enriched ruminant feed 
with white-rot fungi. In conclusion, the literature 
data and the results obtained in this work show that 
the effect of RB depends on fungal strain and 
nature of the compound tested. 
4.3 Effect of RB on Growth Phases : Periods 
for various phases of P. eryngii fermentation are 
given in Table 4. White cottony mycelial mat on the 
surface of substrate was observed in all sets of the 
different rates of RB tested. The periods for 
complete mycelial covering recorded were variable 
with respect to the concentration of RB used. The 
most rapid spawn running took place within 20 days 
in the mixture of WS followed by 24 days in the 
combination of WS+ 5% RB while, WS + 10%RB 
had taken maximum 27 days to complete spawn 
running. The primordial formation in terms of pin 
heads was observed in all experimental sets. The 
duration of primordial formation was found to be 
variable for different groups. The results are 
presented in Table 4. The formation of primordia 
was observed within a lesser period of 67.63 days 
with the WS, whereas the combination WS+5%RB 
or 10%RB took more time of 77, 84.27 days 
respectively. The fruit body yield was observed 
within a lesser period of 105.34 days with the WS, 
whereas the combination WS+5%RB or 10%RB 
took more time of 110.24, 126.17 days respectively 
(Table 4). The higher doses of nitrogen rich 
supplements resulted in temperature increase 
(thermogenesis) sufficient to kill the mycelia (Lalley 
& JanBen 1993). The slower spawn running at 
higher concentrations of additives in this study may 
be due to the excess nitrogen, which is known to 
inhibit mushroom growth (Demirci, 1998; Baysal et 
al., 2003). Gupta & Vijay (1991) also reported that 
supplementation above 2% resulted in undue 
heating of compost. 
The growth of Pleurotus eryngii on wheat straw 
changes its chemical composition by increasing the 
organic matter content and modifying cell wall 
components, which may improve the nutritional 
quality of wheat straw. This process may allow 
using straw treated with P. eryngii for ruminant 
feeding. 
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Table 1. Properties of wheat straw used as substrate 
C N S C/N Klason lignin Crude protein 

      
  38.13     0.39     1.25    98.04        21.33          2.43 
 
 
 
Table 2. The effect of RB on total lignin degradation (%) at different growth phases 

 
*Mean of three replicate ± standart error. 
Values followed by the same letter along each row are not significantly different by Duncan’s multiple range 
test (p<0.05). Each value is an average of three replicates. 
 
 
 
Table 3. The effect of RB on C, H, N and, S content and C/N ratio of nonfermented and spent substrate 
Groups C (%) N(%) S (%) C/N (%) 

SW (control) 35.52±2.58 0.29±0.10 1.31±0.81 135.73±29.56 
SW + 5% RB 34.88±2.72 0.95±0.21 1.26±0.80  37.98±11.34 
SW + 10% RB 34.72±0.50 0.82±0.04 1.48±0.11 42.41±2.81 
 
*Mean of three replicate ± standart error. 
Table 4. The effect of RB on growth periods 
Growth period (day) 
 
Groups 

 
Spawn running 

 
Primordia initiation 

 
Fruit body yield 

WS  20.36±1.55c*  67.63±2.14c 105.34±.2.1c 
WS + 5% RB 24.00±0.47b  77.00±1.22b 110.24±3.6b 
WS + 10% RB 27.00±1.45a  84.27±1.16a 126.17±2.8a 
 
*Mean of three replicate ± standart error. 
Values followed by the same letter along each column are not significantly different by Duncan’s multiple 
range test (p<0.05). Each value is an average of three replicates. 
 
 
 
 

Groups 
              WS       WS + 5% RB        WS + 10% RB 
Growth phases Lignin 

degratadion 
(%) 

 
pH 

Lignin 
degradatio
n (%) 

 
pH 

Lignin 
degradati
on (%) 

 
pH 

Spawn running 22.71±1.16a* 7,65 20.71±1.43b 7,21 16.89±2.4
0c 

7,20 

Primordia initiation 34.19±1.01a 8,22 31.54±0.60b 8,02 35.45±0.7
5a 

7,62 

Fruit body yield 46.63±0.18a 7,83 46.02±1.07a 7,72 39.95±1.2
5b 

7,49 
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Figure legends 
 
 

 
 
Figure 1. The effect of RB on crude protein content of spent substrate 
 
 


