Phytochemical and cytotoxicity testing of *Indigofera lupatana* Baker F.

Ngoci S. N., Mwendia C. M and Mwaniki C. G.

Dept. of Biochemistry and Molecular Biology, Egerton University, Box 536, Egerton, Kenya.

Corresponding author: hicogn@gmail.com

Key words: Phytochemicals, Cytotoxicity, Brine shrimp, *Indigofera lupatana* Baker F.

1 SUMMARY

Indigenous plants are promising as a cheap and alternative complimentary medicine (CAM). Although the use of phytomedicine has been in practice for long, little has been done to evaluate their effectiveness, safety, target organisms and also their chemical characterization. *Indigofera lupatana* Baker F. (locally known as *Mugiti*) has been used by Mbeere community of Kenya to treat many conditions such as cough, diarrhea, pleurisy and gonorrhea. In this study, powdered sample of *I. lupatana* Baker F. roots were sequentially extracted using hexane, ethyl acetate, dichloromethane and methanol solvents. The resultant extract fractions were subjected to phytochemical tests and brine shrimp cytotoxicity bioassay. Results showed that the fractions had Phenolics, Flavonoids, Tannins, Saponins, Terpenoids, Cardiac glycosides, Steroids and Phlobatannins. These are responsible for the bioactivity of the sample fractions. All fractions had a LC50 value greater than 1000µg/ml which is an indication that they are all non toxic. Therefore *Indigofera lupatana* Baker F. can be used as an alternative source of new, effective, safe drug(s) because it demonstrated presence of phytochemicals with no oral toxicity.

2 BACKGROUND INFORMATION

Medicinal plants contribute significantly to rural livelihoods. Apart from the traditional healers practicing herbal medicine, many people are involved in collecting and trading medicinal plants. The result is an increased demand worldwide leading to enhanced new drugs. The World Health Organization (WHO) estimates that 80% of the world’s population depends on medicinal plants for their primary health care (Gurib-Fakim and Schmelzer, 2007; Mothana et al., 2008).

Natural products are an important source of new anti-microbial agents. Drugs derived from unmodified natural products or semi-synthetic drugs obtained from natural sources accounted for 78% of the new drugs approved by the United States Food and Drug Administration (FDA) between 1983 and 1994 (Suffredini et al., 2006). This evidence contributes to the support and quantification of the importance of screening natural products. Studies aimed at finding and characterization of the substances that exhibit activity against infectious micro-organisms, yet showing no cross resistance with existing antibiotics, are urgently required (Olila et al., 2001). In recent years, pharmaceutical companies have focused on developing drugs from natural products. Also, discovery of new drugs has been made a continuous process to counter the limitations of conventional antibiotics (Doughart and Okafor, 2007), and hence the driving force of this study.
Medicinal plants form the largest single group of plants (Gurib-Fakim and Schmelzer, 2007). *Indigofera lupatana* Baker F. locally called ‘mugiti’ is a woody shrub found in Acacia-Combretum ecological zones of Mbeere District in Kenya. It is widely used for its perceived medicinal value in treating coughs and diarrhea (Riley and Brokensha, 1988), gonorrhea and pleurisy (Kokwaro, 1993). There is apparently no documented scientific report on phytochemical studies and toxicity profiles of this plant. This has often constituted a major constraint to consideration of the use of herbal remedies in conjunction with or as an affordable alternative to conventional medical treatment (Okeke et al., 2001). The bio-activity of natural products is due to phytochemicals, often elaborated for the plant defense. These phytochemicals inadvertently protect humans against pathogens. Some phytochemicals are known to have therapeutic and prophylactic properties, provide nutrition for normal cell health and repairs, inhibit carcinogens and act as antioxidants. The phytochemical screening of plant materials to determine the presence of bioactive chemical constituents is thus vital in the knowledge of their therapeutic properties (Ogunwenmo et al., 2007). This can be done chemically, or through qualitative thin layer chromatography (TLC).

3 MATERIALS AND METHODS

3.1 Collection and Identification of Plant samples: The plant samples for the study were collected from Mbeere district, in Eastern province, Kenya. The plant was taxonomically authenticated at the Department of Biological Sciences of Egerton University. A voucher sample was assigned a reference number (NSN1) and banked in the department herbarium.

3.2 Plant root preparation and extraction: The plant roots were separated, washed, cut into small pieces, air-dried in dark at room temperature to a constant weight and ground into a powder by a mill (Thomas-Wiley laboratory mill, model 4). The powder was extracted by sequential process of four organic solvents of increasing polarity; Hexane, Ethyl acetate, Dichloromethane, and Methanol in that order (Houghton and Raman, 1998; Wojcikowski et al., 2008).

3.3 Phytochemical Tests: Phytochemical tests were done to determine the class of compounds in the active fractions. These were identified by characteristic colour changes using standard procedures according to Houghton and Raman, (1998), Edeoga et al., (2005) and Shanmugavalli et al., (2009), and the results were reported as (+ve) for presence, and (-ve) for absence. They included the following tests:
3.3.1 Alkaloids: A portion of extract (0.2 g) was dissolved in 1 ml of 1% sulphuric acid. To the acid solution, a drop of Mayer's reagent was added and a white to buff precipitate would show presence of alkaloids. (Houghton and Raman, 1998; Shanmugavalli et al., 2009).

3.3.2 Saponins: About 0.2 g of powdered sample extract was boiled in 2 ml of distilled water on a water bath and filtered. A fraction of aqueous filtrate measuring 1 ml was mixed with 2 ml of distilled water and shaken vigorously to form a stable persistent froth. The frothing was mixed with about three drops of olive oil and shaken vigorously. Formation of an emulsion confirmed presence of saponins (Edeoga et al., 2005).

3.3.3 Tannins: About 0.2 g of the dried powdered samples were boiled in 10 ml of distilled water in a test tube and then filtered. Positive tests were confirmed by addition of 0.1% FeCl₃ solution, resulting in a characteristic blue, blue-black, green or blue-green color (Edeoga et al., 2005).

3.3.4 Test for phlobatannins: About 2 g of powdered sample was boiled with 1% aqueous hydrochloric acid for 5 minutes. A positive test result was confirmed by deposition of a red precipitate (Edeoga et al., 2005).

3.3.5 Test for flavonoids: About 5 ml of dilute aqueous ammonia solution was added to a portion of the aqueous filtrate of the plant extract, followed by addition of concentrated sulphuric acid. A positive test result was confirmed by the formation of a yellow coloration that disappeared instantly (Edeoga et al., 2005).

3.3.6 Test for steroids: About 2 ml each of acetic anhydride and sulphuric acid was added to about 0.5 g of solvent extract. A positive test result was confirmed by change of colour from violet to blue or green (Edeoga et al., 2005; Shanmugavalli et al., 2009).

3.3.7 Test for terpenoids (Salkowski test): About 5 ml of the extract was mixed with 2 ml of chloroform and 3 ml of concentrated H₂SO₄ was added to form a layer. A positive test result was confirmed by presence of a reddish brown colouration at the interface (Edeoga et al., 2005).

3.3.8 Test for cardiac glycosides (Keller-Killiani test): About 5 ml of the extract was mixed with 2 ml of glacial acetic acid containing one drop ferric chloride solution. To this, 1 ml of concentrated sulphuric acid was slowly underlayed to the sample mixture. A positive test result was confirmed by the presence of a brown ring at the interface (Edeoga et al., 2005).

3.4 Chemical group tests: The fractions were tested for some of the functional groups as follows:

3.4.1 Phenolic group test: To test for the presence of phenolic groups, 3 to 5 drops of 1M NaOH (aq) were added to 2 ml of the sample. Solubility of the sample was an indication of presence of phenolic groups (Pavia, 1990).

3.4.2 Carboxylic acid group test: To test for the presence of carboxylic acid groups, 3-5 drops of 1M NaHCO₃ (aq) were added to 2 ml of sample extract. Solubility and effervescence of the sample was a confirmation of a presence of carboxylic groups (Pavia, 1990).

3.4.3 Lucas test for alcohol groups: To test for the presence of alcohol/hydroxyl groups, 3-5 drops of Lucas reagent were added to 2 ml of the sample. Formation of green precipitate was a confirmation of positive results. If the reaction took place very fast, tertiary alcohols were present, if moderate reaction took place, secondary alcohol were present and where reaction was unobservable, it indicated presence of primary alcohols (Jerry et al., 1998).

3.4.4 Potassium permanganate test for unsaturation or hydroxyl group: To test for the presence of double and/or triple bonds or OH groups, 3-5 drops of 1 M Potassium permanganate was added drop wise and shaken. Decolourisation of potassium permanganate was a confirmation of a positive test (Furniss et al., 1989).

3.4.5 Tollen’s test for aldehyde and/or ketone groups: To test for the presence of aldehydes and/or ketones, 3-5 drops of Tollen’s reagent were added to 2 ml of the sample. Presence of silver or a black precipitate was a confirmation of a positive test (Jerry et al., 1998).

3.5 Brine shrimp toxicity bioassay: The brine shrimp (Artemia salina leach) toxicity bioassay was conducted according to Orech et al., (2005) and Ayo et al., (2007) with few modifications. Artificial seawater was prepared by dissolving sea salt (38.0 g) in distilled water (1 L). The seawater was put in a small tank and a teaspoon of brine shrimp eggs was added to one side of the divided tank, which was covered. The other side was not covered so as to allow light that attracted the
hatched shrimps. The tank containing the brine shrimp eggs was left at room temperature for 48 hours to allow the eggs to hatch.

Different concentrations of plant extract fractions were prepared, using 1% aqueous DMSO. This involved dissolving sample extract (30 mg) in DMSO (3 ml). From this solution, concentrations (1000, 500, 250, 125, and 62.5 µg/ml) were obtained respectively by serial dilution. An aliquot of each concentration (1 ml) was transferred, in triplicates, into clean sterile universal vials with pipette and artificial sea water (9 ml) was added. Ten shrimp nauplii were added to each vial (30 shrimps per concentration). DMSO aqueous solution (1%) was used as the negative control. All test tubes were incubated at room temperature for 24 hrs. After this period, the number of the dead and the surviving brine shrimps was recorded, and percentage death at each concentration was determined. The LC_{50} value at 95% confidence interval was determined from the counts using the statistical method of probit analysis. The criterion for toxicity for fractions was established as LC_{50} value > 1000 µg/ml (non toxic), ≥500≤1000 µg/ml (weak toxicity) and <500 µg/ml (toxic) (Orech et al., 2005; Ayo et al., 2007; Mbwambo et al., 2007; Bastos et al., 2009).

3.6 Statistical analysis: The determination of LC_{50} value at 95% confidence interval was determined from the count by Probit Analysis using the EPA computer probit analysis program (Version 1.5) (Orech et al., 2005; Mbwambo et al., 2007).

4.0 RESULTS

4.1 Phytochemical results for Indigofera lupatana Baker F. roots extracts: The phytochemical screening of the extracts of *Indigofera lupatana* Baker F. revealed that alkaloids were absent in all extract fractions while phytosteroids were present in all sample fractions (Table 1). Flavonoids, saponins cardiac glycosides and terpenoids were absent in hexane extracts but all were present in ethyl acetate, dichloromethane and methanol extract fractions. Tannins were present in the more polar extracts of methanol and dichloromethane but absent in the ethyl acetate and non-polar hexane fraction. Phlobatannins were present in the hexane, ethyl acetate and methanol fractions, but absent in the dichloromethane extract fraction.

<table>
<thead>
<tr>
<th>Phytochemical constituent</th>
<th>Hexane extract</th>
<th>Ethyl acetate extract</th>
<th>Dichloromethane extract</th>
<th>Methanol extract</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alkaloids</td>
<td>-ve</td>
<td>-ve</td>
<td>-ve</td>
<td>-ve</td>
</tr>
<tr>
<td>Flavonoids</td>
<td>-ve</td>
<td>+ve</td>
<td>+ve</td>
<td>+ve</td>
</tr>
<tr>
<td>Tannins</td>
<td>-ve</td>
<td>-ve</td>
<td>+ve</td>
<td>+ve</td>
</tr>
<tr>
<td>Saponins</td>
<td>-ve</td>
<td>+ve</td>
<td>+ve</td>
<td>+ve</td>
</tr>
<tr>
<td>Cardiac glycosides</td>
<td>-ve</td>
<td>+ve</td>
<td>+ve</td>
<td>+ve</td>
</tr>
<tr>
<td>Phlobatannins</td>
<td>+ve</td>
<td>+ve</td>
<td>-ve</td>
<td>+ve</td>
</tr>
<tr>
<td>Phytosteroids</td>
<td>+ve</td>
<td>+ve</td>
<td>+ve</td>
<td>+ve</td>
</tr>
<tr>
<td>Terpenoids</td>
<td>-ve</td>
<td>+ve</td>
<td>+ve</td>
<td>+ve</td>
</tr>
</tbody>
</table>

(+ve) - Represent presence of the tested phytochemicals in the sample fraction
(−ve) - Represent absence of the tested phytochemicals in the sample fraction

4.2 The Chemical results for *Indigofera lupatana* Baker F. roots extracts: The chemical tests revealed presence of phenolic groups, carboxyl groups and hydroxyl groups in ethyl acetate, dichloromethane and methanol extract fractions, but their absence in the hexane fraction. Aldehyde and/or ketone compounds were however present in all extract fractions while unsaturated compounds were present in all fractions except dichloromethane extract fraction.
Table 2: Chemical tests result.

<table>
<thead>
<tr>
<th>Chemical constituent</th>
<th>Hexane extract</th>
<th>Ethyl acetate extract</th>
<th>Dichloromethane extract</th>
<th>Methanol extract</th>
</tr>
</thead>
<tbody>
<tr>
<td>NaOH test for Phenolic Group</td>
<td>-ve</td>
<td>+ve</td>
<td>+ve</td>
<td>+ve</td>
</tr>
<tr>
<td>NaHCO3 test for Carboxyl Group</td>
<td>-ve</td>
<td>+ve</td>
<td>+ve</td>
<td>+ve</td>
</tr>
<tr>
<td>Lucas Test for Hydroxyl Groups</td>
<td>-ve</td>
<td>+ve</td>
<td>+ve</td>
<td>+ve</td>
</tr>
<tr>
<td>KMnO4 Test for unsaturation</td>
<td>+ve</td>
<td>+ve</td>
<td>-ve</td>
<td>+ve</td>
</tr>
<tr>
<td>Tollen’s Test for Aldehyde and/or Ketone Groups</td>
<td>+ve</td>
<td>+ve</td>
<td>+ve</td>
<td>+ve</td>
</tr>
</tbody>
</table>

(+ve) - Represent presence of the tested chemical groups in the sample fraction
(−ve) - Represent absence of the tested chemical groups in the sample fraction

4.3 Cytotoxicity test result for the Root Extracts of Indigofera lupatana Baker F.: The brine shrimp lethality bioassay results were determined by probit software. From these analyses, it was established that all extract fractions had a LC50 value of greater than 1000µg/ml and hence none was toxic (Table 3).

Table 3: Cytotoxicity test results.

<table>
<thead>
<tr>
<th>Extract fraction</th>
<th>LC50 (µg/ml)</th>
<th>95% CI</th>
<th>Slope (± SE)</th>
<th>χ²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hexane</td>
<td>1370.78</td>
<td>974.76 – 3514.65</td>
<td>2.88 ± 0.80</td>
<td>1.05</td>
</tr>
<tr>
<td>Ethyl acetate</td>
<td>2335.15</td>
<td>2026.33 – 2737.86</td>
<td>4.97 ± 0.66</td>
<td>4.61</td>
</tr>
<tr>
<td>Dichloromethane</td>
<td>1858.39</td>
<td>1589.06 – 2221.05</td>
<td>3.69 ± 0.47</td>
<td>4.27</td>
</tr>
<tr>
<td>Methanol</td>
<td>1248.09</td>
<td>1087.95 – 1457.43</td>
<td>3.87 ± 0.46</td>
<td>3.70</td>
</tr>
</tbody>
</table>

LC50- means the concentration that kills 50% of the population (in µg/ml); 95% confidence interval gives the fiducial limit; 1% DMSO solution was used as negative control and caused no mortality to brine shrimps; CI – Represent confidence interval.

5.0 DISCUSSION:

Arrays of phytochemicals were detected in the sample fractions. These phytochemicals included: flavonoids, tannins, saponins, cardiac glycosides, steroidal glycosides, phlobatannins and terpenoids. They are normally produced by plants as an evolutionary adaptation to harsh environment or in response to attack by other organisms (Ogunwenmo et al., 2007). They however have been found to inadvertently confer anti-microbial protections to humans due to compounds synthesized in the secondary metabolism (Samy and Gopalakrishnakone, 2008) as well as being immunomodulative (Okuda2005; Al-Bayati and Al-Mola, 2008).

Tannins were detected in dichloromethane and methanol extracts only. They have physiological role by acting as antioxidants through free radical scavenging activity, chelation of transition metals, inhibition of pro-oxidative enzymes and lipid peroxidation (Navarro et al., 2003; Vit et al., 2008), hence modulating oxidative stress and preventing degenerative diseases. They also inhibit tumor growth by inducing apoptosis (Scalbert et al., 2005) and inhibit mutagenecity of carcinogens (Okuda 2005). They exhibit anti-microbial activity by complexing proteins such as adhesins, substrates, cell wall and cell membrane proteins, hence inactivating microbial adhesion which is the first step in establishment of infections, and also causing cell wall/membrane disruption (Cowan, 1999; Okuda, 2005; Victor et al., 2005; Biradar et al., 2007). They also inactivate microbial enzymes and cell envelope transport proteins by processes that may involve reaction with sulphydryl groups or through non-specific interaction with the proteins (Samy and Gopalakrishnakone, 2008; Kaur and Arora, 2009).

Phenolics were also detected in ethyl acetate, dichloromethane and methanol extracts fractions.
They function by complexing metal ions (e.g. cobalt, manganese, iron, copper, etc.) necessary for microbial growth as co-factors and activators of enzymes (Okuda, 2005; Biradar et al., 2007). They also have anti-viral activity by inhibiting viral reverse transcriptase and inducing DNA fragmentation, and they potentiate host-immune defense (Okuda, 2005; Biradar et al., 2007; Ogunwenmo et al., 2007). Toxicity to microorganisms in phenolic compounds depends on the site and the number of hydroxyl groups, with evidence that increased hydroxylation results to increased toxicity (Przybylski et al., 1998; Cowan, 1999; Biradar et al., 2007; Samy and Gopalakrishnakone, 2008). This was justified further by detection of hydroxyl groups in these extract fractions (Table 2).

Both tannins and phenolics have endocrine role, and they function by interacting with estrogen receptors (Victor et al., 2005). They are also anti-inflammatory, molluscidical and hence important in the control of schistosomiasis (Victor et al., 2005). They also have anti-diarrheal, anti-septic, anti-viral, anti-fungal, anti-parasitic, anti-irritant properties, used in curbing hemorrhage, in wound healing, and improving vascular health by suppressing peptides that harden arteries (Victor et al., 2005; Awoyinka et al., 2007; Ogunwenmo et al., 2007).

Flavonoids were also detected in all fractions except hexane fractions. They exert their roles as chain breaking anti-oxidants, and by preventing oxidation of low-density lipoprotein by macrophages and metal ions like copper. This reduces the oxidative stress (Bühler and Miranda, 2000). They also act as ‘nature’s biological modifiers’ as anti-allergens, anti-inflammatory, and induces phase two enzymes that eliminate mutagens and carcinogens (Ogunwenmo et al., 2007). They also act as anti-microbial by complexing extracellular and soluble proteins, and bacteria cell wall. More lipophilic flavonoids may also disrupt microbial membranes (Navarro et al., 2003; Al-Bayati and Al-Mola, 2008; Samy and Gopalakrishnakone, 2008; Kaur and Arora, 2009). Probable targets on microbial cell are surface-exposed adhesins, cell wall polypeptides, and membrane bound enzymes. Still, they may inactivate bacterial toxins (e.g. cholera toxin) and inhibits bacterial glucosyltransferases. Flavonoids are also known to increase coronary flow, to reduce the myocardial oxygen consumption and to lower the arterial pressure (Dong et al., 2005). They are also known to reduce capillary fragility (Harborne, 1973), to be anti-trypanocidal (Navarro et al., 2003), anti-allergic and also to be anti-spasmodic and hence applied to relief asthma and nose bleeding (Victor et al., 2005). Flavonoids lacking hydroxyl groups (-OH) on their structure are more active against the micro-organism than those having -OH, and this supports the idea that their microbial target is the membrane (Cowan, 1999; Samy and Gopalakrishnakone, 2008).

Saponins were also detected in all fractions except hexane fractions. They boost respiratory system as expectorant, and hence activity against cough. This could perhaps justify the already traditionally established function of the plant in the treatment and management of dry coughs. They also have anti-protozoa activity by reacting with cholesterol in the protozoal cell membranes causing cell lyses (Cheeke, 1998). Also, saponins functions as vaccine adjuvant, as anti-inflammatory, emetics, anti-viral, antifungal, insecticidal, molluscicidal, piscidal and as anti-bacterial by inhibiting colonization and boosting the immunity. The mode of action for the anti-bacterial effects may involve membranolytic properties of the saponins as well as lowering of the surface tension of the extracellular medium (Al-Bayati and Al-Mola, 2008). They have antineoplastic activity where they act by reacting with cholesterol rich membranes of cancer cells, and inducing mitotic arrest that causes apoptosis of cell (Sahelian, 2008). This limits cell division and growth. They also bind to primary bile acids, which are metabolized by colon bacteria into secondary bile acids. Some of these are promoters of colon cancer (Cheeke, 1998). Also, saponins increase the blood flow of the coronary arteries, prevent platelet aggregation and decrease the consumption of oxygen by heart muscles (Dong et al., 2005). They also have anti-edema, anti-tussive, purgative, anti-hypercholesterol, hypotensive, cardiac depressant and immuno-regulatory properties (Victor et al., 2005; Awoyinka et al., 2007).

Terpenoids were also detected in all fractions except hexane fraction. They exert their roles as antibacteria, anti-amoebic, anti-fungi, anti-viral, anti-protozoan, anti-allergens, as immune boosters and as antineoplasia (Ogunwenmo et al., 2007; Roberts,
The mechanism of action is speculated to involve membrane disruption by these lipophilic compounds (Cowan, 1999; Ogunwenmo et al., 2007; Samy and Gopalakrishnakone, 2008). This may involve perturbation of the lipid fraction of bacterial plasma membranes, altering membrane permeability hence causing leakage of intracellular materials. This is related to physicochemical characteristics of the active principle such as lipophilicity and water solubility, lipid composition and net surface charge of the bacterial membranes. These phytochemicals can cross the cell membranes, penetrating the interior of the cell and interacting with intracellular targets critical for antibacterial activity (Trombetta et al., 2005). They are also used to alleviate epilepsy, to relieve cold, influenza, cough and acute bronchial disease (Victor et al., 2005), and this could offer a justification why the plant is used in managing cough.

Phytosteroids and cardiac glycosides were also detected in plant extract fractions. Phytosteroids are used to treat venereal diseases, used in pregnancy to ensure an easy delivery and hormonal balance as well as to promote fertility in women and libido in men. They also act as starting material in the synthesis of sex hormones (Edeoga et al., 2005; Victor et al., 2005) and hence they are a potential source of contraceptives. They are also antimicrobial, analgesic, anti-inflammatory, and immuno-suppressive by inhibiting macrophage activation, blocking the production of pro-inflammatory cytokines. They are also active in managing stomach ailments and in decreasing serum cholesterol levels (Soares et al., 2005).

Cardiac glycosides are used in treatment of congestive heart failure, whereby they inhibit Na+/K+-ATPase pump that causes positive ionotropic effects and electrophysiological changes. This strengthens heart muscle and the power of systolic concentration against congestive heart failure (Ogunwenmo et al., 2007). They are also used in treatment of atrial fibrillation, flatter, and they act as emetics and as diuretics (Harborne, 1973; Desai, 2000; Awoyinka et al., 2007). Phlobatannins were also found to be present in all extracts fractions except dichloromethane fraction, and their presence suggests the diuretic property (Awoyinka et al., 2007) of the plant. However alkaloids were absent in all the extract fractions, and this could offer justification for the non-toxicity of the plant extracts, since most of alkaloids are associated with toxicity (Sneden, 2005; Victor et al., 2005; Ogunwenmo et al., 2007).

The brine shrimp (Artemia salina leach) are used in the laboratory bioassay of toxicity through estimation of medium lethal concentration (LC50) (Lieberman, 1999; Ayo et al., 2007). Several studies have established Brine Shrimp Test as an excellent benchtop, simple bioassay for the preliminary investigations in discovery, purification, isolation and research of natural products (Lieberman, 1999). The technique is a low-cost test, easily mastered bioassay, utilizing small amount of the test material (Bastos et al., 2009). It has been used for preliminary assessment of anti-bacterial, cytotoxicity, pesticidal, antineoplastic and insecticidal activity (Suffredini et al., 2006). Other investigators have used the technique for detecting fungal toxins, cyanobacteria toxins, heavy metals, food additives, cytotoxic testing of dental materials, home cleaning products and pharmaceuticals (Carballo et al., 2002; Lieberman, 1999). Furthermore, studies have showed that there is a positive correlation between the lethality to brine shrimp and corresponding oral lethal dose. Therefore the bioassay present a useful alternative model for predicting the oral acute toxicity of plant extract as well as a model for bioassay-guided fractionation of active cytotoxic and antitumor agent (Parra et al., 2001; Ayo et al., 2007; Bastos et al., 2009).

According to Parra et al. (2001), Navarro et al. (2003) and Bastos et al. (2009), LC50 values less than 1000µg/ml is considered toxic. All tested extract fractions had a LC50 value greater than 1000µg/ml (Table 3) and therefore all the plant extracts were not toxic.

This finding is important in support of the use of this plant for alternative medication. Although members of Mbeere communities have used this plant for centuries without raising any issue of its toxicity, this experiment provide a scientific justification on the safety of the bioactive compounds in this plant.
6.0 CONCLUSION
Phytochemical testing showed that the extracts are rich in tannins, saponins, terpenoids, flavonoids, phenolics, phlobatannins, phytosteroids and cardiac glycosides. These compounds are often associated with the anti-microbial activities of plant extracts, and therefore reflect a potential for the development of novel chemotherapeutic agents or templates which in future may serve as leads for the production of synthetically improved therapeutic agents. Brine shrimp lethality test showed that all the extract fractions were non-toxic justifying the safety of the plant against oral toxicity. This validated information should be useful to traditional healers and patients on judicious use of the Indigofera lupatana Baker F. plant, as its safety can to some extent be guaranteed. The millenarian use of these plants in folk medicine suggests that they represent an economical and safe alternative to treat multi drug resistant, emerging and re-emerging infectious diseases.

7 ACKNOWLEDGEMENT
We are grateful to the department of Biochemistry and Molecular Biology, Chemistry and Biological sciences Egerton University for material support.

8 REFERENCES

