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1 SUMMARY 
Plant parasitic nematode (PPN) employs a combination of behavioral and physiological 
survival strategies to conquer its host. For instance, the PPN uses its style to inject a 
number of secretions, commonly called effectors into the host tissues or suck food from the 
host into its intestines. The effectors assist the nematode to gain entry, circumvent host 
defense and mimic some plant cellular processes to sustain colonization. In this review, the 
main strategies used by PPN during its parasitism have been reviewed and demonstrated in 
order to obtain more understanding on how the PPN parasites its host. 

 
2 INTRODUCTION 
Plant parasitic nematodes (PPN) are vermiform 
microscopic animals that infect plants, causing 
yield loss in crops and cost of about US$ 125 
billion annually in world agriculture 
(BES,2009). These organisms employ a 
combination of behavioral and physiological 
survival strategies to conquer its environment 
(Lambert and Beker, 2009). The PPN must 
circumvent predators, tolerate changes in soil 
moisture and temperature, and escape other 
dangers such as dying when host plant perishes. 
To contend with these obstacles, some PPN are 
ectoparasites and they spend most of their time 
in the soil to avoid perishing with the plant host 
and others are endoparasites and spend most of 
their time within plant tissue to escape 
predators (Lambert and Beker, 2009). The PPN 
also can be i) sedentary ectoparasites which, 
feed and remain outside the root or other 
feeding area throughout the life e.g. sheath 
nematodes, ii) sedentary endoparasites which, 

invades the tissues soon after hatching and lose 
the ability to move to new sites, therefore they  
maintain an active feeding site. e.g. cyst 
nematodes (Heterodera and Globodera) and the 
root-knot nematodes (Meloidogyne),  iii) 
migratory ectoparasites which, feed on the 
epidermis of roots and retain the ability to 
move to new feeding sites e.g. pin, ring and 
stubby-root nematodes in mint or iv) migratory 
endoparasites which, feed on external surfaces 
of roots and later on burrow to the cortex of 
the plant e.g. Pratylenchus (Root-lesion 
nematodes) in mint, and Hirschmanniella (rice 
root nematode) in rice (Ingham and Merrifield, 
1996; Baldwin et al., 2004; Lambert and Beker, 
2009). The PPN must also be able to allocate 
its host and break a complex barrier or plant 
cell wall made of cellulose, hemicelluloses, and 
pectin for successful parasitism (Stewart et al., 
1993; Cosgrove, 2005). In addition, for PPN to 
conquer its host, it must overcome a variety of 
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other defense strategies used by the host to halt 
colonization (Kyndt et al., 2012). Some of such 
strategies include production of anti-pathogenic 
toxins  including phytoalexins, terpenoid and 
isoflavoids (Wuyts et al., 2006) and production 
of reactive oxygen species (ROS) which can 

activate some plant pathways responsible for 
strengthening plant cell wall (Smat and Jones, 
2011). The aim of this review is to summarize 
the most important strategies used by PPN to 
conquer its host.  

 
3 HOW DOES NEMATODE ALLOCATE AND INFECTS ITS HOST? 
3.1 Host allocation : In order to locate 
host roots, PPNs respond to different 
attractants, which may be long-distance 
attractant (CO2), short distance attractant (root 
diffusates), and local attractants (specific 
chemicals in root diffusates) through the input 
from their sense organs (Perry, 2005). These 
attractants help the PPN to move to individual 
host root and to preferred site of invasion 
where its surface is explored for a site suitable 
for penetration. The PPN possess two anterior 
sensila, (sense organ) called the amphids which, 
have glandular sheath cells used for 
chemoreception and host allocation (Stewart et 
al., 1993; Jones et al, 2000). The amphids 
through its sheath cells secrete a protein called 
MELOIDOGYNE AVIRULENCE 
PROTEIN-1 (MAP-1) which, play a role in 
PPN parasitism and  other amphidial functions 
(Semblat et al., 2001). Another protein called 
CELL DIVISION CONTROL 48 (CDC48)-
like protein is produced from the sensillae 
caudal end of nematode (phasmids), which also 
produce some secretions (Perry, 1996). Once it 
reaches the root surface, the PPN explore the 
root surface and start thrusting its stylet, which, 
is accompanied by release of secretions as a 
preparation for root penetration. 
3.2 Functional parts and mechanisms 
involved during nematode infection on it 
host plant : The PPN use mechanically 
specialized needle-like structure called stylet  to 

punch host tissues to draw food (Lambert and 
Bekal, 2009) and inject  effectors (EPs) 
including proteins, peptides and other 
molecules into host tissue to facilitate plant 
parasitism (Hogenhout et al., 2009; Haegeman et 
al, 2011). The nematode’s stylet is connected to 
the pharynx which has specialized areas that 
can expand and contract to pump EPs into the 
host tissues or suck food and push it into the 
intestine (Fig 1). 
The pharynx is connected to the intestine 
which is responsible for nutrient absorption, 
excretion of waste, lipid storage and rapid 
movement. The intestine is connected to the 
rectum (in female) or cloaca (in males) which, is 
used for excretion (Fig 1). Most EPs, produced 
by PPN are secreted at the salivary/ pharyngeal 
gland (Lambert and Beker, 2009; Haegeman et 
al, 2011). Other parts of PPN known to secrete 
EPs are sensilla ends (Perry 1996; Semblat et al., 
2001) and cuticle which secrete a bunch of 
antioxidants for neutralization of host toxins. 
Example,  PPN cuticle produce glutathione 
peroxidase to coat themselves and break 
hydroperoxides and  peroxiredoxine to 
metabolize the reactive oxygen species (ROS) 
produced by the host (Li et al., 2011). PPN can 
also slough off its cuticle to avoid recognition 
by the host (Spiegel and Mcclure, 1995, Jones et 
al., 2000).  
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Figure 1: A model illustrates functional parts involved during infection by sedentary plant parasitic nematode 
on it host plant. In this scheme, the nematode uses its stylet to punch plant cell, to draw food and also inject 
effector proteins (red circles), that aid in parasitizing the plant. The effectors can mimic host (blue circles) 
peptides, cause cell wall expansion and/or dissolution, alter cell cycles and manipulate host defense pathways. 
The stylet is connected to the pharynx which, pumps effectors into the host cells or food into its intestine. 
The waste is expelled through the rectum/cloaca.  
 
 
3.3  Nematode weaponry: Several 
techniques such as copy DNA-amplified 
fragment length polymorphism (Tytgat et al., 
2004), microarrays (Elling et al., 2009), 
expressed sequenced tags (Karim et al, 2009; 
Haegeman et al., 2011), proteomics (Mbeunkui 
et al., 2010) and specific life stages and organs 
(Jones et al., 2009; Wubben et al., 2010; Hussey 
et al., 2011) have been used to identify 
nematode weaponries (NW) responsible during 
its interaction with its host. Most of those NW 
also referred to as genes are believed to be 
derived from bacteria and fungi through 
multiple genes transfer (Jones et al., 2005, 
Danchin et al., 2010). The nematode genes 
encode a number of EPs with specific target 
roles on their hosts to aid parasitism. In the 

following section, some highlights of EPs target 
have been described. 
3.3.1 EPs that target the host cell wall: The 
PPN can release specialized EPs into its host to 
facilitate ease entry. During penetration and 
migration, PPNs employ a bundle of EPs to 
penetrate their host cell wall. Some examples of 
EPs already reported are beta-1,4-
endoglucanase which, degrade cellulose of plant 
cell wall (Smant et al., 1998); pectate lyase 
which, cleaves the alpha-1,4-linkages of pectate 
and polygalacturonase which, hydrolyse 1,4-
alpha-D-galactosiduronic linkages (Abd et al., 
2008; Haegeman et al., 2011); xylanase which, 
hydrolyse 1,4-beta linkages in xylan, 
arabinogalactan endo-1,4-beta-galactosidase 
and arbinase of cell wall pectin (Haegeman et 
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al., 2011). In compatible interaction, the ejected 
EPs or microbial/pathogen/herbivore-
associated molecular patterns (MAMPS, 
PAMPS, or HAMPS) can alter host cell 
structure and function to promote infection by 
PPN (Hogenhout et al., 2009). The PPN  also 
secrete other compounds which, can promote 
the activities of the  EPs such as cellulose 
binding protein which, binds plant pectin 
methylesterase (Heweze et al., 2008) and 
expansins which, disrupts non-covalent bonds 
between polysaccharide chains making it easy 
for cell wall degrading enzymes to act (Abda et 
al., 2008; Karim et al., 2009; Danchin et al., 
2010). PPN also can secrete EPs which can 
degrade host proteins. Some examples of such 
proteins are cystein protease and 
aminopeptidases (bellafiore et al., 2008), aspartyl 
proteases from Meloidogyne incognita (Vieira et 
al., 2011). These proteins secreted by PPN 
must overcome host R-genes such as Hs1pro-1, 
Gro1-4, Gpa2 and Mi (Jones and Dangl, 2006; 
Sacco et al., 2009) and other plant defense 
pathways (Doyle and Lambert, 2003; Jammes et 
al., 2005).  
3.3.2 EPs that respond to host defense: The 
PPN can produce compound such as 
glutathione-S-transferases (GST) to detoxify 
host nematocidal compound (Dubreuil et al., 

2007). PPN such as G. rostochiensis is capable of 
producing antioxidant compounds such as 
glutathione peroxidase and superoxide 
distimutase that can break host ROS (Jones et 
al., 2004, Bellafiore et al., 2008, Nagano et al., 
2009). PPNs are capable of suppressing host 
defense by disrupting some plant metabolic 
pathways (Kyndt et al., 2012). Example, 
chorismate mutase (CM) produced by root-
knot nematodes, cyst forming nematodes and 
migratory endoparasites (Jones et al., 2003; 
Lambert et al., 1999). The CM is thought to 
reduce a pool of chorismate required in salicylic 
acid (SA) plant pathway, which is important in 
the activation of host defense (Wildermuth et 
al., 2001).  
3.3.3 EPs that ensure sustainability of PPN: 
Up on successful entry, PPN establish a single 
feeding site (Wyss, 1997; Grunewald et al., 
2009). The PPN can release EPs to manipulate 
plant auxin levels and distribution (Lee eta l., 
2011); block, hijack or modulate cellular 
process (Ni and Clark, 2006)) and vascular 
development (Kondo et al., 2011); regulate 
cellular division and differentiation (Mitchum et 
al., 2008); mimic host peptides to promote 
formation of giant cells, syncytia and facilitate 
parasitism by nematode (De Meutter et al., 
2003, Hueng et al., 2003).  

 
4  CONCLUSIONS 
Plant Parasitic Nematodes employ different 
strategies to circumvent the host. For 
successful allocation, establishment and 
colonization on its host, PPN uses specialized 
morphological features and produce a number 
of EPs, peptides and other molecules with 
targets on host. Until the time of writing this 

review, it has not been unveiled whether the 
EPs work dependently or independently of 
each other during PPN parasitism. Future 
research could therefore, be targeted on this 
quest in order to obtain more understanding on 
these strategies used by PPN to parasite its 
host. 
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