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1 ABSTRACT  
Peroxidase (POX), a biotechnologically important enzyme was purified from bulb of Ipomoea 
batatas and characterized for use in the bioconversion of phenolic compounds from industrial 
wastewater. Purified peroxidase (POXp) was obtained using the gel-filtration chromatography 
and anion exchange chromatography. A final yield of 18 % was obtained with 20.5 as 
purification fold. Electrophoresis on SDS-PAGE and native-PAGE showed that POXp is 
monomeric with a molecular weight of 44 kDa. The optimum pH and optimum temperature 
were respectively 6.0 and 45 ° C. All enzyme activity was retained for 2 hours at pH values 
between 4.0 to 9.0. While the enzyme was partially inhibited by SDS, PCMB and sodium 
disulfide, it was completely inhibited by ascorbic acid, citric acid, sodium azide and sodium 
thiosulfate. The presence of Calcium (Ca2+), Copper (Cu2+), Barium (Ba2+), Manganese (Mn2+) 
and polyethylene glycol increased POXp activity but it was reduced by Magnesium (Mg2+), 
Sodium (Na+), Potassium (K+) and EDTA. However, Zinc (Zn2+) had no effect on POXp. The 
enzyme oxidized a wide range of phenolic substrates, the greatest rate of oxidation being 
obtained with guaiacol. These properties may allow the use of these enzymes for 
bioremediation of industrial wastewater containing phenolic compounds. 
 

 
2 INTRODUCTION 
Plant peroxidases are heme-containing enzymes 
that catalyze oxidation of various organic and 
inorganic substrates in the presence of hydrogen 
peroxide (Bozzo et al., 2004; Köksal, 2011). They 
are ubiquitous and can be obtained from plant, 
animal and fungus (Boeuf et al., 2000; Veitch, 
2004; Sunde and Thompson, 2009). In plant 
kingdom they are involved in many processes of 
plant development such as seed germination 
(Lewak, 1986), fruit ripening (Rothan and Nicola, 
1989), abscission (Gaspar et al., 1978), senescence 
(Abeles et al., 1988), sexual differentiation (Ghosh 

and Basu, 1984), floral induction (Kay and Basile, 
1987), lignin and suberin biosynthesis 
(Wakamatsu and Takahama, 1993; Bernards et al., 
1999; Boerjan et al., 2003), auxin oxidation 
(Veitch, 2004), disease resistance (McLusky et al., 
1999) and regulation of hormone (Gaspar, 1986). 
POXs have enormous applications. They have 
been used as biocatalysts in the bioremediation of 
wastewater containing phenolic compounds and 
aromatic amines (Wagner and Nicell 2001; 
Alemzadeh and Nejati, 2009; Ashraf and Husain, 
2010). Peroxidases have also been used as 
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catalysts in organic and polymer synthesis 
(Hutterman et al., 2001), decolorization of 
synthetic dyes (Bhunia et al., 2002; Akhtar et al., 
2005) and food technology (Lavery et al., 2010). 
Moreover they are used in bio-sensor 
construction (Ruzgas et al., 1996; Jia et al., 2002) 
and application in analysis and diagnostic kits 
(Agostini et al., 2002).  
Several peroxidases isoenzymes from plant 
sources, including sweet potato (Leon et al., 2002) 
have been isolated; however these investigations 
have been unsuccessful. Horseradish peroxidase 
(HRP) is the most extensively studied peroxidase. 

The availability and cost of commercially 
available HRP restricts its applications (Fatima et 
al., 2007). For example, HRP Type I, essentially 
salt-free, lyophilized powder, 50-150 units/mg 
solid (using pyrogallol), costs more than 45 
USD/5000U (SIGMA-ALDRICH product). 
Obtaining the cheapest new source of peroxidase, 
to replace the HRP would be an alternative. The 
aim of the present study was to extract, purify 
and characterize a novel source of peroxidase 
from an economical affordable source such as 
Ipomoea batatas, which can be utilized as 
biocatalyst. 

  
3 METHODOLOGY 
3.1 Chemicals and reagents: Phenyl-
Sepharose CL-4B, Sephacryl S-200 HR, DEAE-
Sepharose CL-6B and CM-Sepharose CL-6B gels, 
BSA and H2O2 were obtained from Sigma 
Chemical Co. Protein standards and reagents 
used for electrophoresis were purchased from 
Bio-Rad. All other chemicals and reagents were 
of analytical grade. 
3.2 Plant Material: Ipomoea batatas bulbs 
were grown in Ouagadougou (Burkina Faso) 
during 2008. They were stored at -20 ° C (Diao et 
al., 2011). 
3.3 Peroxidase activity and total protein 
determination: Crude enzyme extracts were 
prepared by grinding the bulbs of sweet potato 
(300 g) in 450 ml of distilled water containing 0.9 
% NaCl (w/v). The crushed extract was 
centrifuged at 6000 rpm for 30 min. The 
supernatant was filtered through Whatman paper 
N°1, stored at -20 ° C and used as crude enzyme 
extract. POX activity was measured with a 
spectrophotometric according to Dicko et al. 
(2002). The reaction mixture consisted of 10 µL 
of enzyme extract, 20 µL of 50 mM guaiacol, 10 
µL of 100 mM H202 and 160 µL of 100 mM 
citrate-phosphate buffer (CPB) pH 6.0. Control 
assays in which the enzyme extracts or substrates 
were replaced by buffer were performed. The 
reaction was monitored at 470 nm. One unit of 
POX activity (U) is defined as the amount of 
enzyme releasing 1 µmol of guaiacol radical/min 
under the assay conditions (Dicko et al., 2002). 
Protein concentration was determined according 

to Lowry et al. (1951) using bovine serum 
albumin as a standard. 
3.4 Purification procedure: Prior to 
purification, pH’s effects on enzyme activities 
were determined in order to identify the best 
buffer to use. Results showed that 100 mM CPB, 
pH 6.0 is the best buffer for enzyme stability. All 
purification steps were made at 4 °C, pH 6. The 
crude extract was concentrated with 80 % of 
ammonium sulphate.  After centrifugation (6,000 
rpm, 30 min, 4 °C), the precipitate was dispersed 
in 100 mM CPB and again centrifuged. 
Supernatant was dialyzed with the same buffer 
and applied to sephacryl S-200 HR column 
(1.6X65 cm) previously equilibrated with 100 mM 
CPB. The column was eluted with the CPB at 
flow rate of 0.17 mL/min, 1 mL/fractions.  The 
eluted fractions were collected and peroxidase 
activity was measured. All fractions containing 
strong peroxidase activity were pooled and 
subjected to DEAE-Sepharose column (2.6 x 
6.0). Unbound proteins were removed by 
washing the gel with two volumes of 
equilibration buffer. Bound proteins were then 
eluted in a stepwise NaCl gradient (flow rate of 1 
ml / min, 2.0 ml fractions). The pooled active 
fractions were dialyzed with 100 mM CPB pH 
6.0, constituted the purified sweet potato 
peroxidase (POXp), and stored at 4 °C, prior to 
biochemical characterization. 
Protein concentration and enzyme activities were 
determined at each purification step. 
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3.5 Protein electrophoresis: SDS-PAGE 
was performed by first denaturing protein 
samples by treatment in 125 mM Tris-HCl 
buffer, pH 6.8 containing 4 % (w/v) SDS, 1 % 
(v/v) β-mercaptoethanol, 20 % (v/v) glycerol and 
0.025 % (w/v) bromophenol blue, at 100 °C, for 
5 min. Electrophoresis was performed according 
to Laemmli (1970) on 1.5 mm thick slab gels (7 X 
8 cm) containing 12 % of acrylamide, Tris-HCl 
buffer pH 8.8; 375 mM and 0.1 % (w/v) SDS. 
Electrophoresis was carried out in 25 mM Tris, 
192 mM glycine buffer containing 0.1 % (w/v) 
SDS as electrode buffer, applying an intensity of 
10 mA. Proteins were stained with silver nitrate 
according to Blum et al (1987). Molecular-mass 
standard markers (Bio-Rad) were phosphorylase 
b (97.4 kDa), BSA (66.2 kDa), ovalbumin (45.0 
kDa), carbonic anhydrase (31.0 kDa), soya bean 
trypsin inhibitor (21.5 kDa) and lysozyme (14.4 
kDa). For non-denaturing PAGE, samples were 
mixed just before electrophoresis with sample 
buffer without β-mercaptoethanol and SDS. 
Proteins were revealed as mentioned above. 
3.6 Effects of pH and temperature on 
enzyme activities: The effect of pH on enzyme 
activity was determined by measuring the 
oxidation of guaiacol in a set of buffers at various 
pH values ranging from pH 2.6 to 10.0. The used 
buffers were 100 mM citrate-phosphate from pH 
2.6-7.0, 100 mM sodium acetate from pH 4.0 to 
5.6, 100 mM sodium phosphate from pH 5.6-8.0, 
100 mM tris-HCl from pH 7.0-9.0 and 100 mM 
glycine from pH 8.0-10.0. The pH values of each 
buffer were determined at 25 °C. The pH stability 
of the purified enzyme was studied in pH range 
2.6 to 10.0 using the buffers described above. 
After 2 h pre-incubation at 25 °C, aliquots were 
taken and immediately assayed for residual POX 
activity. The effect of temperature on POX 
activity was performed in the best buffer at 
optimum pH over a temperature range of 10 to 
80 °C using the routine POX assay. For thermal 
denaturation tests, the aliquots of enzyme were 
preincubated at different temperatures ranging 

from 10 to 80 °C for 30 min. Residual activities, 
determined at 37 °C under the standard assay 
conditions, were expressed as activity percentage 
compared to the untreated control enzyme 
activity. 
3.7 Determination of substrate specificity: 
The substrate specificity of POX was determined 
by incubating the enzyme with various phenolic 
substrates (50 mM) at 37 °C in 100 mM citrate-
phosphate buffer pH 5.6 for 5 min. The 
oxidation of these substrates was determined by 
monitoring the change in absorbance using a 
spectrophotometer (DU 7500, Beckmann, 
Munich). The oxidation rates of substrates were 
measured as a decrease in absorption (substrate 
disappearance) or an increase of absorbance 
(product appearance). The same reaction mixture 
and routine assay conditions were used by 
replacing guaiacol with ABTS (A405; ε= 36.8 
mm_1 cm_1), pyrogallol (A420; ε=2640 M

−1 cm−1), 
catechol (A295 ε=1700 M−1 cm−1), ferulic acid 
(A318; ε=6000 M

−1 cm−1), or other phenolic 
compounds (A420). 
3.8 Effect of some chemicals on POX 
activities: To determine the effect of various 
compounds such as metal ions, detergents and 
dithiol-reducing agents as possible activators or 
inhibitors of the purified POX, the enzymatic 
solutions were preincubated at 37 °C for 2 hours 
with the compounds and then the remaining 
activity was assayed. The final concentration of 
ions or chemicals agents in the reaction mixture 
was 5 mM. The substrate guaiacol was added to 
the medium and incubated at 37 °C for 5 min. 
The residual activity was assayed as in the 
standard conditions. 
3.9 Statistical analysis: All 
spectrophotometric assays were performed using 
a MRX 96-well microplate reader coupled to a 
computer (Hewlett Packard). Absorbances were 
automatically recorded. All assays were 
performed in triplicate. Data were expressed as 
means ± standard errors using SPSS software 
package. 
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4 RESULTS AND DISCUSSION 
4.1 Purification of peroxidase: The 
procedure for enzyme purification is summarized 
in Table 1. For the partial purification of 
peroxidase, crude extract was precipitated by 
using solid ammonium sulphate. An 83 % 
recovery of peroxidase activity was obtained on 
this step. Further separation was made by gel 
filtration chromatography resulting in one peak 
(Fig. 1A). From this step, a purification factor of 
3.9 was obtained, with a yield of 38 % (Table 1). 
The last step was obtained by ion-exchange 
chromatography, resulting in one peak eluted 
with a 0-1 M NaCl gradient (Fig. 1B). From this 
end-step, a final purification factor of 20.5 was 

obtained, with a yield of 18 % (Table1). This yield 
is significantly better than those (2.5 %) obtained 
by Bari et al. (2013) with the purification of a 
peroxidase from papaya. Nevertheless it was 
lower than those obtained by Goyal and Chugh 
(2013) with the POX of pearl millet grains (41 
%), those obtained by Mall et al. (2013) with the 
POX from Citrus medica leaf (28.6 %) and those 
of apple seed POXs (39.99 %) obtained by Zia et 
al. (2011).  His specific activity was 828, 77 U/mg 
(Table 1). Which was higher than 136.10 U/mg 
reported by Hu et al. for peroxidase from lettuce 
stems (2012). 

 
Table 1. Purification of POX from Burkina potato 

Purification step  Total 
Protein 
(mg) 

Total 
activity 
(Units) 

Specific 
activity 

(Units/mg) 

Purification 
factor 

Yield (%) 

Crude extract  1019±1.3 41100±1.8 40 1.0 100 

Ammonium 
sulphate 

 443±1.2 34330±1.1 77 1.9 83 

Sephacryl-S100 H  99±0.4 2225±0.9 157 3.9 38 

DEAE-Sepharose 
CL-6B 

 9±0.2 7500±0.3 828 20.5 18 
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Figure 1. Purification of peroxidase from sweet potato. (A) Gel filtration on Sephacryl S-200 HR 
column. (B) Anion exchange chromatography on DEAE-Sepharose CL-6B column 
 
 
4.2 Molecular properties: POXp appears as 
a single protein band of molecular weight about 
44 kDa by SDS-PAGE analysis (Fig.2, lane C). 
The native-PAGE of the same enzyme gave also 

a single band, confirming the homogeneity of the 
enzyme and that a single isoenzyme was present 
at the last purification step (Fig.2, lane A). This 
enzyme had a monomeric structure as most of 

(A) 

(B) 
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plant secretory peroxidases (Vitali et al., 1998; 
Johri et al., 2005; Kim and Lee, 2005; Hermelinda 
et al., 2007). In comparison to other molecular 
weights of purified plant peroxidase, POXp from 
Burkina’ sweet potato was similar to those of 
cationic peroxidase from Raphanus sativus (Kim 
and Lee, 2005) and those of Moringa oleifera leaves 
(Khatun et al., 2012). These data are lower than 
peroxidase from cabbage leaves (67 kDa) 

(Kharatmol and Pandit, 2012) and those (70 kDa) 
of Hevea brasiliensis cell (Chanwun et al., 2013). 
Nevertheless this POX has a molecular weight 
higher than peroxidase from Sweden sweet 
potato (I. batatas) tubers (37 kDa) (Leon et al., 
2002); Sorghum bicolor grain (38 kDa) (Dicko et al., 
2006); Zizania latifolia (31 kDa) (Luo et al., 2012) 
and avocado (40KDa) (Rojas-Reyes et al., 2014). 

 
 

 

                                                                                  
Figure 2. Electrophoresis of purified peroxidase from sweet potato. Lane A, Native-PAGE of purified 
POXp. Lane B, Native-PAGE of total protein. Lane C, SDS-PAGE of purified POXp. Lane D, 
molecular weight markers (values in kDa). Proteins were stained by silver nitrate. 
 
4.3 pH and temperature effects: The pH 
effect on guaiacol oxidation is shown in Figure 3. 
It was found that purified POXp from sweet 
potato had optimum pH at 6.0. This is similar to 
those obtained on POX from Turkish black 
radish (Sisecioglu et al., 2010). However, these 
results are lower than those of Solanum melongena 
fruit (Vernwal et al., 2006) and leaves of spinach 
(Spinacia oleracea) (Köksal, 2011). After 2 hours 
incubation, the enzyme retained more than 80 % 
of its activity at pH ranging from 4.6-8.6 (Fig.4). 
It is important to notice that the enzyme activity 
is not only dependent on the pH but also on the 
chemical nature of the buffering substances. At 
extreme pHs, below 4.0 and above 9.0, POXp 
activity drastically decreased. At low pH, the 
decrease of activity might be attributed to the 
release of heme prosthetic group from the 
polypeptide chain, which resulted in the loss of 
enzyme activity (Lopez and Burgos, 1995, Deepa 
and Arumughan, 2002). The decrease of activity 

at high pH could be attributed to the formation 
of phenol-conjugated base. Therefore, the basic 
form did not allow the phenolic compounds to 
act as hydrogen donors. It is known that the 
active site of POX is mainly composed of ionic 
groups (prosthetic group) that must be in the 
proper ionic form in order to maintain the 
conformation of the active site of enzyme for 
substrate binding and reaction catalysis 
(Whitaker, 1995). Hence, the best conditions for 
POXp activities were obtained at pH 4.6-8.0 
(Fig.4). This is quite interesting because the use 
of pH close to neutrality may be an advantage for 
biological and industrial applications. The 
peroxidase from Ipomoea batatas was optimally 
active at 45 °C (Fig. 5). This optimum 
temperature was lower than those reported for 
hyperthermostable peroxidase from the Solanum 
melongena (84 °C) (Vernwal et al., 2006) and POX 
of Turnip root (50 °C) (Brassica napus var. okapi) 
reported by Saboora et al. (2012). However, the 
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optimum temperature for the enzyme activity was 
higher than POXs from fruits of Mallus pumilus 

(Singh et al., 2010) and Turkish black radish 
(Raphanus sativus L.) (Sisecioglu et al., 2010). 

 

 
Figure 3. The effect of pH on the enzyme activity. Activities were determined by measuring the 
oxidation of the guaiacol in a series of buffers at various pH values ranging from pH 2.6 to 10.0.  

 
Figure 4. The pH stability of POXp. Enzyme activity was carried with guaiacol as substrate, after 2h 
incubation at 25 °C in series of buffers at various pH values ranging from pH 2.6 to 10.0.  
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Figure 5. Effect of temperature on the POXp activities. Enzyme activities were determinate at the 
indicated temperature in 100 mM citrate-phosphate buffer pH 6.0 using guaiacol as substrate under the 
standard test conditions.  
 
4.4 Effect of metal ions, reducing and 
detergent agents: The influence of various 
metal ions and chelating agents on the purified 
enzyme is reported in Table 2. POXp was 
inhibited by EDTA, K+, Mg2+ and Na+. Cu2+ ions 
increased the activity of POXp, thereby, 
indicating their potential role as cofactor. For 
DNA polymerase, it was found that Cu2+ at low 
concentrations increased the affinity of the 
enzyme to its substrate, whereas at high Cu2+ 
concentrations, it can result on the enzyme 
inhibition (Zaalishvili et al., 1990). While Zn2+ 
inhibited POX isolated from Mallus pumilus 
(Singh et al., 2010) or from H. tuberosus (Wang et 
al., 2008), it has no effect on the POXp from this 
study. In the other hand, it was reported that 
Zn2+ activated POXs from bean seeds (Wang et 
al., 2008). The purified enzyme was activated by 
Mn2+, which is similar to data obtained on 
peroxidases from Cocos nucifera (Murugesan and 
Rathnam, 2013) and Citrus reticulata var. Kinnow 
(Nouren et al., 2013). However, Dubey et al. 
(2007) observed an inhibition with Mn2+ for 
apple peroxidases. POXp was also activated by 
Ba2+ and Ca2+. POX activation with divalent 
cations such as Ca2+ is quite usual because the 
latter is present in the structure of POXs, and it 
plays a role in the stability and activity of POX 
during the catalysis. POXp was inhibited by K+. 

Goyal and Chugh (2013) observed also an 
inhibition with K+, on peroxidase from pearl 
millet (Pennisetum glaucum) grains. The influence of 
other chemicals such as detergent and other 
organic compounds was also studied (Table 3). 
All the tested detergents inhibited POXp, but to 
different extends. Results show that POXp 
activities were totally inhibited by sodium azide. 
Sodium azide binds the heme iron atom to the 
distal site thus giving six-coordinate peroxidase 
complexes that inactivate the enzyme (Veitch, 
2004).  POXp was also totally inhibited by 
reducing agent such as sodium disulfide, sodium 
thiosulfate and ascorbic acid. Sodium dodecyl 
sulfate (SDS) and p-chloro-mercuro-benzene 
(pCMB) showed 33 % and 59 % inhibition, 
respectively. The inhibition by pCMB indicated 
that thiol groups are important for POX catalysis. 
Ethylene diamine tetra acetic acid (EDTA), a 
chelating agent also exerted an inhibitory effect. 
The same effect of EDTA was found for POXs 
from Jatropha curcas and Viscum angulatum (Cai et 
al., 2012; Das et al., 2011). Sodium dodecyl 
sulphate (SDS) which is a strong anionic 
detergent inhibited POXp activity probably due 
to a conformational change of the enzyme. 
However, polyethylene glycol (PEG) enhanced 
the enzyme activities. This non ionic polymer has 
been shown to be efficient in improving POX 
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catalysis notably during the degradation of 
phenolic compounds (Diao et al., 2011). PEG 
might exert positive effect on POX with the 

protection of the enzyme by interacting with the 
reaction products (Kinsley and Nicell, 2000). 

 
Table 2: Effect of metals ions on POX activities. Enzymatic activity was assayed with guaiacol as 
substrate. 
Metal ion Ba2+ Zn2+ Ca2+ Mn2+ Cu2+ K+ Na+ Mg2+ EDTA 

Relative activity (%) 146 102 140 105 147 25 64 27 16 
 

Table 3: Effect of detergents reducing agents and other compounds on POX activities. Enzymatic 
activity* was assayed with guaiacol as substrate 
Chemical 
compound 

ascorbic 
acid 

sodium 
thiosulfate 

sodium 
azide 

citric 
Acid 

sodium 
disulfite 

PCMB SDS PEG 

Relative activity 
(%) 

0.00 0.00 0.00 0.00 7 59 33 556 

*Enzymatic activity was assayed with guaiacol as substrate 
 
4.5 Substrate Specificity: Data show that 
POX oxidized a wide range of phenolic 
substrates (Table 4). This is of great importance 
since many industrial effluents contain a variety 
of phenolic contaminants; of which some are 
more amenable to enzymatic treatment than 

others. However, the efficiency of POX catalysis 
depends on the chemical nature of the reducing 
substrates.  Guaiacol was the best substrate for 
POXp following by ABTS. The oxidation’s 
degree of 4-methoxyphenol acid and pyrogallol 
were respectively 82.56 % and 82.34 %.  

 
Table 4: Substrate specificity of the purified sweet potato peroxidase (POXp) 
Phenolic compound Specific activity 

(U/mg protein) 
  Relative activity 

(%) 
  

Guaiacol 828.00±9.08   100.00   
ABTS 772.36±8.22   93.28   
4-Methoxyphenol Acid  683.60±9.6   82.56   
Pyrogallol 681.77±11.24   82.34   
Gallic Acid  652.38±9.16   78.79   
Catechol 643.27±6.07   77.69   
Dopamine 625.06±7.22   75.49   
4-hydroxybenzoic Acid  597.73±4.16   72 .19   
1-Naphtol 555.59±9.21   67.10   
Ferulic Acid  504.10±1.9   60.99   
Vanillin 456.47±7.98   55.13   
1,4-Tyrosol 444.30±7.65   53.66   
Phloroglucinol 441.24±12.42   53.29   
Para-coumaric Acid 438.26±3.46   52.93   
Caffeine 432.13±7.26   52.19   

4-Hydroxyphenylacetic Acid  432.13±4.08   52.19   
Syringic Acid  415.90±3.89   50.23   
Tannic acid 00   0.00   

 
 
Gallic Acid, catechol and dopamine were over 75 
% oxidized by POXp. Except tannic acid, all 

other hydroxylated-aromatic compounds were 
over 50 % oxidized by POXp. The outcome of 
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such studies might help to use POX from sweet 
potato grown in Burkina Faso to detoxify 
phenolic compounds from wastewaters (Diao et 

al., 2011) and might therefore have important 
application with respect to phytoremediation. 

 
CONCLUSION  
In conclusion, peroxidase from sweet potato 
grown in Burkina Faso can be extracted and 
purified by means of few classical purification 
steps with relative high yields. Biochemical 
parameters with respect to enzyme activity and 
stability revealed its wide possible utilization in 
biotechnological process involving peroxidases. 
Moreover, the study on substrate specificity 
showed that POX is very important in the 

oxidation of phenolic compounds including 
those found in polluted environment. This 
property is of interest because it could be useful 
in finding solution to the thorny problem of 
degradation of recalcitrant phenolic compounds 
that resist on conventional methods for removal. 
The study opened a new perspective for the use 
of potato peroxidase in environmental 
biotechnology.  
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6 LIST OF ABBREVIATION: 
ABTS: 2, 2’-azino-bis (3-ethylbenzthiazoline)-6-sulfonic acid, 
CPB: Citrate Phosphate Buffer, 
EDTA: ethylene diamine tetra acetic acid.  
HRP: Horseradish peroxidase 
PEG: Polyethylene glycol, 
PCMB: para-chloromercuro-benzoic acid, 
POX: Peroxidase, 
POXp: purified peroxidase of sweet potato, 
SDS: Sodium Dodecyl Sulfate. 
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