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ABSTRACT 

Objective: It is well known that some data features (sample size, skewness, among others) may 

determine method performance. The choice of those features depends on the researcher’s level of 

awareness on the statistical method. In this study, the level of awareness on the influence of spatial 

data key characteristics (sample size, skewness, spatial dependency and variogram model) in 

Bayesian Maximum Entropy (BME) was analyzed. 

Methodology:  A systematic review was conducted that covers the period from 1990 (year of BME 

introduction) to 2019. Two main keywords “Bayesian Maximum Entropy” and “BME” were used 

for literature search. Publications which only mentioned the keywords without applying BME were 

excluded while those with application and/or BME theory discussion were considered. Six of the 

world’s leading Open Access sources of scientific literature were considered, namely: Science 

Direct, African Journals Online, Springer, Google Scholar, MPDI and Academic Journals. A total 

of 118 research articles from 62 journals were identified. The sample sizes screened shows that 

25.4% of the published articles used few samples (less than 100), which implies the variogram 

might not yield accurate results. The analysis of the use of skewness showed that most researchers 

do not apply transformation on skewed data (82.2%) nor consider skewness in their descriptive 

statistics (90.7%). Even though 11% of theoretical papers have mentioned about spatial 

dependency level, 92.4% of them failed to consider it. Most researchers (68.64%) do not specify 

the variogram models but when they do, they mostly use exponential model (12.7%). It clearly 

appears in this review that most researchers do not consider the effect of sample size, skewness, 

and spatial dependency level when applying BME. Yet very few research works have focused on 

these aspects. This therefore calls for more in-depth studies on the effect of data characteristics on 

BME’s performance. 

Keywords: Bayesian Maximum Entropy, sample size, skewness, spatial dependency. 
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INTRODUCTION 

In geostatistics spatial, temporal and or spatio-

temporal data with various characteristics are 

used to predict values of a random variable at 

any unsampled geographical location. The 

traditional method for this prediction is the 

stochastic one called kriging (Mazari, 2012). 

Compared to other interpolation techniques, 

kriging has been demonstrated to be the best, 

since it quantifies, in addition to estimating 

associated uncertainty (Goovaerts, 2001; 

Adhikary & Dash, 2017). However, the kriging 

technique requires data to be at the intrinsic 

stationarity (Meul & Meirvenne, 2003). This 

guarantees the existence of the covariance and 

assumes that the observations variance exists 

and is only a function of the lag distance 

(Obaid & Mohammed, 2020). Moreover, 

similar with most statistical methods (e.g. 

regression analysis and analysis of variance), 

the accuracy of kriging estimates depends on 

the degree of skewness of the dataset (Arslan, 

2017). Ignoring important assumptions, e.g. 

normality and homogeneity of variance can 

lead to either Type I or Type II error therefore 

affect the conclusion (Osborne, 2010). To 

overcome these weaknesses regarding the 

kriging techniques, Bayesian Maximum 

Entropy (BME) method was introduced 

(Christakos, 1990). The BME is a strong 

mathematical background – based approach 

for handling spatiotemporal data (Serre et al., 

1998; He & Kolovos, 2017). The strength of 

this technique relies on its ability to integrate 

various sources of data, regardless of their 

nature (Gengler & Bogaert, 2016). Therefore, 

BME method has proven to be more reliable 

for spatial and spatiotemporal analyses through 

a wide range of applications in environmental 

geology, environmental sciences, soil 

sciences, public health, ecology, remote 

sensing, energy, real estate research, among 

others (Yang et al., 2016). However, its 

reliability may depend on data pattern and 

structure such as sample size, degree of 

skewness, spatial dependence and variogram 

model which might influence the prediction 

accuracy. In general, statistical analyses are 

less biased with high sample size (Steven et al., 

1998; Neerchal et al., 2008; Serge & Brigittte, 

2012). In geostatistics, the variogram 

summarizes variations of a variable in a 

targeted region (Lark, 2000). The computation 

of this central statistic in spatial data analysis 

is affected by the sample size (Christakos, 

2000), large sample size yield better 

variograms (Webster, 1992) while smaller 

sample sizes (< 50) lead to erratic variograms 

(Webster, 1992), which shows the strong 

effects of sample size on BME – based 

estimates. BME is more robust than other 

methods for spatiotemporal prediction. 

However, in terms of data normality handling 

(Christakos, 2000), the commonly used 

Matheron’s variogram estimator (Matheron, 

1963) in geostatistics is still based on variances 

and thus, is sensitive to data normality (Kerry 

& Oliver, 2007). Moreover, the measure of 

entropy is affected by the degree of skewness. 

Therefore, the higher the skewness is, the 

smaller the calculated entropy (Orton & Lark, 

2009). These fluctuations may have significant 

effects on BME estimates, unfortunately, 

skewness was not addressed in many research 

(Fu et al., 2014; Hosseini & Kerachian, 2017; 

Xiao et al., 2018). In some cases, 

transformation is applied on skewed data (Lee 

& Ellis, 1997; Douik et al., 2005; Jiang et al., 

2014), to improve the normality and therefore 

the accuracy of estimates (Amin et al., 2018). 

Whether a statistical test is considered “robust” 

to violations of data normality or a 

nonparametric test, taking normality into 

account can improve the accuracy of the results 

(Osborne, 2010). Thus, if the variogram and 

entropy are sensitive to data skewness, it is 

important to consider how skewed data would 

be handled in various fields of application 

using BME method.  

Spatial dependency captures information on 

autocorrelation among locations at a given lag 
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distance apart in a targeted geographical 

domain. It helps to unveil unobservable 

heterogeneity when data are sampled from 

large geographical areas. Spatial dependence is 

traditionally described using the variogram 

which is strongly influenced by the marginal 

distribution of the random field (Kazianka & 

Pilz, 2010). The Spatial Dependency level is 

estimated based on the nugget to sill ratio. 

There is a strong spatial dependency, if the 

ratio is less than 0.25 and moderate spatial 

dependency if the ratio ranges between 0.25 - 

0.75 (El-Sayed Ewis, 2012). In soil sciences, 

strong spatially dependent characteristics may 

be influenced by intrinsic variations in soil 

properties such as texture and organic matter 

content. The moderately spatially dependent 

variables, for example bulk density and total 

porosity, are controlled more by extrinsic 

variations such as cultivation (Jerry and 

Sidney, 2012). In an ecological application, 

Jetz and Rahbek (2002) and Lichstein et al. 

(2002) demonstrated that spatial dependency 

influences the model’s coefficient of 

determination. In order to design better 

geostatistical – based systems’ control, this 

research built up a state of knowledge 

regarding how raw primary data characteristics 

are taken into account during geostatistical 

analysis, by addressing the following 

questions: (1) What are the sample sizes often 

used in BME analysis? (2) How is data 

skewness handled when applying BME 

analyses? (3) To what extent is spatial 

dependency considered?  

 

METHODOLOGY 

The materials included original research 

articles, reviews, as well as letters to editors. 

Six of the worlds’ leading Open Access 

sources of scientific publications were 

identified. These were Science Direct 

(www.sciencedirect.com), African Journals 

Online (www.ajol.info), Springer 

(www.springer.com), Google Scholar 

(www.scholar.google.com), MPDI 

(www.mpdi.com) and Academic journals 

(www.academicjournals.org). This review 

focused on research works published on BME 

from 1990 up to December 2019. The articles 

were downloaded, using the search keywords: 

“Bayesian Maximum Entropy” and/or 

“geostatistics”.  Only research with BME 

application and theorical articles with no 

application, were analysed. Then, basic 

information was recorded on journal name, 

impact factor, title, objectives, major findings, 

and keywords. Each paper was reviewed and 

information extracted on sample sizes, degree 

of skewness, option for data transformation, 

transformation method, spatial dependency 

level and strategy for handling it, and 

variogram model. 
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Fig.1. Article screening diagram flow 

 

Data analysis: The frequencies of the 

considered sample size, skewed data, data 

transformation, spatial dependence and 

variogram models were computed. The 

diversity of BME application was obtained by 

computing the frequency per field. Based on 

this frequency, histograms were computed to 

easily visualize the importance per field of 

application. The BME evolution from 1990 to 

2019 was described using a line plot combined 

with characteristic equation of the curve and 

coefficient of determination (R2). 

Sample size: Three classes of sample were 

used, that is small (less than 100), average 

(100-1000) and large (greater than 1000). 

Frequency of each class by fields of 

application were computed and the 

relationship between the sample classes and 

fields were tested using a Chi-square test (X
2) 

of independence. 

Skewness: The distribution of datasets on 

which BME were applied in published articles 

were explored using descriptive statistics. The 

frequencies of the response to the question: “Is 

data transformed (Yes/No)?”, “data 

transformation methods”, and “Is there any 

descriptive statistics (Yes/No)?” were 

computed by field to build a contingency table. 

A Chi-square test (X
2) of independence was 

used to find out if the decision to transform 

data, computation of descriptive statistics and 

the choice of transformation methods was field 

dependent. 

Spatial dependence: The frequency of papers 

in which spatial dependency is considered and 

the ones where it is not considered was 

computed. Chi-square test (X
2) of 

independence was used to establish the 

relationship between the consideration of 

spatial dependence and field of application. 

Variogram models: Summary statistics of 

variograms models in the published articles 

were computed. Correlation between field and 

the choice of variogram model was assessed 

using Chi-square test (X
2) of independence. 



Gongnet et al.,  J. Appl. Biosci. Vol: 181, 2023 Practical considerations on data patterns in Bayesian Maximum 

Entropy Estimation: A systematic and critical review 

18881 

RESULTS 

Characteristics of published papers on 

BME: One hundred and eighteen articles from 

60 journals (Appendix 2) were downloaded 

and analysed. The BME were applied in many 

fields, with soil sciences (19.8 %), 

hydrogeology (15.3%) and health science 

(15.3%) as the major fields (Figure 2). The 

BME evolution plot from 1990 to 2019 shows 

that it is increasingly used with the average 

number following an exponential distribution 

and coefficient of determination (R2) of 59%. 

This suggests that the model explained 59% of 

the variations. However, three time periods can 

easily be distinguished from the reviewed 

articles, viz: 1990 - 2000 with 3 publications 

per year, 2000-2010 with up to 7 per year and 

2010-2019 with a sharp increase up to 15 

article per year (Figure 3). 

 

 
Fig.2: BME application fields 

 

 
Fig.3:  Evolution of BME–based research as calculated from publications 
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Handling sample size in BME application: 

Of all the sample sizes used by researchers, 

three classes were observed: small (less than 

100), average (100-1000) and large (greater 

than 1000) sample sizes. Despite the diversity 

of sample sizes used, average sample size 

accounting to 32.2% was most frequent. But 

considering the field of application, the lower 

sample sizes were mainly used in engineering 

(66.7%), climatology (50%) and geology 

(45.5%). Average sample sizes were 

considered in earth sciences (100%), 

epidemiology (100%), geography (100%) and 

soil sciences (52.2%), while the larger samples 

were used in renewable energy (100%), 

agriculture (50%), climatology (50%), and 

environmental sciences (50%). Some authors 

(19.5%) did not specify the sample sizes in 

their articles (Table 1). In addition, the choice 

of sample size was not field dependent (X
2 

(36,118) = 40.23, p=0.29) (Table 2). 

 

Table 1: Proportion of publications (%) by sample size and field of application 

Fields 

 

χ2 (36,118) =40.23, p=.29 

Unknown <100 100 - 1000 > 1000  

Agriculture 25.0 25.0 0.0 50.0  

Climatology 0.0 50.0 0.0 50.0  

Earth Sciences 0.0 0.0 100.0 0.0  

Engineering 33.3 66.7 0.0 0.0  

Environmental Sciences 0.0 20.0 30.0 50.0  

Epidemiology 0.0 0.0 100.0 0.0  

Geography 0.0 0.0 100.0 0.0  

Geology 9.1 45.5 36.4 9.1  

Health science 33.3 27.8 27.8 11.1  

Hydrology 22.2 27.8 27.8 22.2  

Remote sensing 100.0 0.0 0.0 0.0  

Renewable Energy 0.0 0.0 0.0 100.0  

Soil sciences 4.3 13.0 52.2 30.4  

Theoretical articles 42.1 21.1 26.3 10.5  

Total 19.5 25.4 32.2 22.9  

 

BME application on skewed data: The BME 

was applied on data with all kind of 

characteristics, especially with regard to 

skewness. Skewness values on which BME 

was applied since 1999 ranges between −2.68 

and 32.5, with a mean of 2.98. Hence, the 

majority of the BME - based analyses used 

positively skewed data. In addition, most 

attributes were highly peaked from a normal 

distribution (kurtosis = 3) with the kurtosis, 

ranging between −0.6 and 28.76 and mean 

value 5.44 (Table 2). Thus, when data is 

skewed, decision for transformation or to use 

normality parameters (skewness and kurtosis 

value) as descriptive statistics, did not depend 

on research field χ2
(13, 118) = 14.33, p = 0.35 

and χ2(13,118) = 11.91, p = 0.54, respectively 

(Table 3). However, cases of transformation 

accounted for 17.8%, out of which only 9.3% 

considered skewness value in their descriptive 

statistics (Table 3). Specifically, data 

transformation was applied in earth sciences 

(100%), geology (36.4%), soil sciences 

(26.1%), and agriculture (25%), while 

skewness was mostly used as descriptive 

statistics in soil sciences (26.1%), climatology 

(16.7%), and environmental sciences (10%) 

(Table 3). Two transformation technics were 

often applied in geostatistical analyses: the 

logarithmic and Box-Cox transformations 

(Table 4). However, none of the applications 

of these two techniques was field - dependent 
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χ2(39,118) = 30.57, p = 0.83). In general, 

logarithmic transformation was the most often 

used (6.8%), while Box-Cox represented only 

0.8%, both representing 38% and 5% of 

transformations, respectively. Some authors 

(10.2%) had transformed data but failed to 

specify the method, which accounts for 57% 

transformations. The logarithmic 

transformation was mostly applied in earth 

sciences (100%), with moderate application in 

the other sciences. Box-Cox transformation 

was only applied in soil sciences (4.3%). In 

most cases (82.2%), researchers did not 

mention anything about data transformation 

methods considered. 

 

Table 2: Degree of skewness and kurtosis in the reviewed articles 

Parameters Skewness Kurtosis 

Minimum -2.68 -0.6 

Maximum 32.5 28.76 

Standard deviation 6.13 7.92 

Mean 2.98 5.44 

 

Table 3: Level of application of data transformation 

Fields Is data transformed? Is there any descriptive 

statistics? 

χ2 (13, 118) =14.33, p=.35 χ2 (13, 118) =11.91, p=.54 

No (%) Yes (%) No (%) Yes (%) 

Agriculture 75.0 25.0 100.0 0.0 

Climatology 100.0 0.0 83.3 16.7 

Earth Sciences 0.0 100.0 100.0 0.0 

Engineering 100.0 0.0 100.0 0.0 

Environmental Sciences 80.0 20.0 90.0 10.0 

Epidemiology 100.0 0.0 100.0 0.0 

Geography 100.0 0.0 100.0 0.0 

Geology 63.6 36.4 90.9 9.1 

Health science 77.8 22.2 94.4 5.6 

Hydrology 88.9 11.1 100.0 0.0 

Remote sensing 100.0 0.0 100.0 0.0 

Renewable Energy 100.0 0.0 100.0 0.0 

Soil sciences 73.9 26.1 73.9 26.1 

Theoretical articles 94.7 5.3 94.7 5.3 

TOTAL 82.2 17.8 90.7 9.3 
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Table 4: Decision for data transformation before BME application in different fields 

Field 

 

Transformation option 

 χ2 (39,118) =30.57, p=.83 

Box–Cox Logarithmic     Unknown  None 

Agriculture 0.0 0.0 25.0 75.0 

Climatology 0.0 0.0 0.0 100.0 

Earth Sciences 0.0 100.0 0.0 0.0 

Engineering 0.0 0.0 0.0 100.0 

Environmental Sciences 0.0 10.0 10.0 80.0 

Epidemiology 0.0 0.0 0.0 100.0 

Geography 0.0 0.0 0.0 100.0 

Geology 0.0 9.1 27.3 63.6 

Health science 0.0 11.1 11.1 77.8 

Hydrology 0.0 0.0 11.1 88.9 

Remote sensing 0.0 0.0 0.0 100.0 

Renewable Energy 0.0 0.0 0.0 100.0 

Soil sciences 4.3 8.7 13.0 73.9 

Theoretical articles 0.0 5.3 0.0 94.7 

Total 0.8 6.8 10.2 82.2 

 

Spatial dependency in BME application: 

The results (Figure 4) shows that majority of 

researchers in all fields do not account for 

spatial dependency level (92.4%). It was 

observed that only the fields of Remote sensing 

(100%), Geology (36.4%) and Environmental 

Sciences (20%) considered the spatial 

dependency levels in their papers. In addition, 

results showed that the consideration of spatial 

dependency in a given paper depends on the 

field of BME application (X
2 (13, 118) = 33.76, 

p=.001). 

 

 
Figure 4: Consideration of Spatial dependency 
 

Choice of variogram models in BME 

computations: Two types of variogram 

models were involved in all geostatistical 

analyses: simple and nested variogram models. 

The most used models were exponential 

variogram (12.71%) and nugget, exponential, 
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and spherical models combined (4.24%) 

(Table 5). The choice of the variogram model 

is significantly linked to specific fields of 

research with X
2 (130,118) = 167.10, p = 0.02 

(Table 6). In simple model, the exponential 

model was mostly used by climatologists while 

spherical model was used in engineering and 

geology. However, remote sensing, 

agriculture, hydrology and health science 

mostly used a combination of exponential, 

gaussian and spherical models. 

 

Table 5: Variogram models in the published articles 

Type of Model Variogram Frequencies (%) 

 Exponential 12.71 

Simple Gaussian 2.54 

 Spheric 3.39 

 Unspecified 68.64 

 Nugget effect + exponential + exponential 1.69 

 Nugget effect + gaussian + exponential 1.69 

 Nugget effect + exponential 1.69 

Nested Nugget effect + spheric + gaussian 

Nugget effect + exponential + spherical 

Nugget effect + exponential + gaussian + spherical 

0.85 

4.24 

1.69 

 Nugget effect + spheric + holesin + nugget effect 0.85 

 Total 100 

 

Table 6. Correlation between field and the choice of variogram model 

Fields 

 

p-value = 0.02; χ2 = 167.10; df =130 (S ) 

1 2 3 4 5 6 7 8    9 10 11 

Agriculture 0 0 25 0 0 0 75 0 0 0 0. 0 

Climatology 0 0 0 0 16.7 0 66.7 0 0 0 16. 7 

Earth Sciences 0 0 0 0 0 0 100 0 0 0 0. 0 

Engineering 0 0 0 0 0 0 66.7 0 33.3 0 0. 0 

Environmental Sciences    30 0 0 0 0 0 70 0 0 0 0. 0 

Epidemiology 50 0 0 0 0 0 50 0 0 0 0. 0 

Geography 0 0 0 0 0 0 100 0 0 0 0. 0 

Geology 18.2 0 0 9.1 9.1 0 45.5 0 18.2 0 0. 0 

Health science 0 0 0 5.6 0 0 88.9 0 0 5,6 0. 0 

Hydrology 5.6 0 5.6 16.7 0 11.1 55.6 5.6 0 0 0. 0 

Remote sensing 0 100 0 0 0 0 0 0 0 0 0. 0 

Renewable Energy 0 0 0 0 0 0 100 0 0 0 0. 0 

Soil sciences 17.4 4.3 0 0 4.3 0 69.6 4.3 0 0 0. 0 

Theory 21.1 0 0 0 0 0 73.7 0 5..3 0 0. 0 
1Exponential, 2Exponential + Exponential, 3Exponential + Gaussian + Spherical, 4Exponential + Spherical, 5Gausian, 
6Gaussian + exponential, 7NR, 8Nugget + exponential, 9Spheric, 10Spheric + Gaussian, 11Spheric + holesin + nugget. 
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DISCUSSION 
The review of the use of BME package within 

the time frame of 1990 to 2019 shows the 

increasingly wide application of this statistical 

tool in various fields (Jerry & Sidney, 2012; He 

& Kolovos, 2017). The exponential trends in 

the application of the BME is due to its 

superiority compared to other methods. In 

general, small sample sizes less than 100 were 

mostly used in BME application in every 

discipline, except in Earth Sciences, 

Geography, Epidemiology, and Renewable 

Energy. It is demonstrated that variogram 

estimation significantly depends on sample 

size, with 100 to 150 locations ensuring 

optimal variogram calculation (Webster and 

Oliver, 1992). In this review, 25.4% of sample 

sizes were small, indicating low reliability of 

the associated research, because of their low 

variogram performance (Lark et al., 2017). 

However, Lark (2000) demonstrated that 

variogram performance also depends on 

estimators used. Therefore, an optimum of 60 

and 90 – 120 locations are needed when 

applying maximum likelihood and method of 

moments, respectively, for variogram 

calculation (Lark, 2000). Our data showed that 

BME was mostly applied on positively skewed 

data. This suggests that attributes on which 

BME were applied were dominated by low 

values and the arithmetic may less describe the 

central tendency of datasets (Clay et al., 1999). 

Indeed, natural variables are highly skewed. 

The kurtosis lies between -0.6 and 28.76 with 

a mean of 5.44 indicating that the attributes are 

highly peaked. This result shows that BME is 

applied on variables that have greater deviation 

from normal distribution. However, 82.2% of 

researchers did not mention whether they 

transformed data before applying BME 

despites the fact that error pdf’s change 

considerably as the skewness values vary 

(Christakos, 2000). The variogram is sensitive 

to highly positive skewed data due to some 

exceptionally large values (Webster & Oliver, 

2001). Kerry & Oliver (2007) have 

demonstrated using a simulated data that when 

the skewness value is outside the bounds of ±1, 

the variogram for the transformed data is more 

suitable than the variogram for the original 

data. He also found that when the skewness 

coefficient is large, the form of the 

experimental variogram becomes erratic and is 

difficult to model. Among authors that have 

transformed data (17.8%), logarithmic 

transformation was the most used (38%) and 

57% of them failed to specify the 

transformation. However, Manikandan (2010) 

suggested that a method of transformation 

should be selected based on the relationship 

between the standard deviation and the mean. 

Logarithmic transformation should be used 

when the standard deviation approximates the 

mean (data is positively skewed). Square root 

transformation should be preferred when the 

mean is proportional to the variance. If the 

standard deviation approximates the mean 

squared, a reciprocal transformation can be 

performed. Box-Cox transformation, which 

represented only 5% transformations, covers 

all traditional methods (e.g., square root, log, 

inverse, cubic root) and easily produces 

optimal normalization (Osborne, 2010). In 

order to overcome the effect of highly 

heterogenous and skewed data, such as the 

distribution of monthly Haemorrhagic fever 

with renal syndrome (HFRS) cases, a class-

dependent Bayesian Maximum Entropy (cd-

BME) was introduced. The method 

demonstrated a greater capacity in modelling 

the variability in HFRS data by dividing the 

original dataset into discrete incidence classes 

(He et al., 2019). The main objective of any 

geostatistical analysis is to predict attributes 

values at unsampled locations using the 

concept of random function, which assumes 

that, the set of unknown values are spatially 

dependent random variables. This existence of 

spatial dependence between observations is 

essential to mapping (Goovaerts, 1998). The 

spatial dependence can be measured by a 
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correlogram or semi variogram and classified 

into weak, moderate, or strong using the 

nugget-to sill ratio (Cambardella et al., 1994). 

However, this study showed that most 

researchers do not consider the level of spatial 

dependency in their studies (92.7%) despite the 

fact that it can affect the variogram 

computation and the BME prediction 

accuracy. The higher the spatial dependence, 

the higher the accuracy of the prediction 

(Orton & Lark, 2007; Orton & Lark, 2009). 

When the spatial dependency value increases, 

BME accuracy of estimation becomes less 

important (Zimmerman & Zimmerman, 1991).  

 

CONCLUSION 

This review showed that most researchers 

involved in spatiotemporal prediction and 

mapping have been neglecting important 

factors such as skewness, sample size and 

spatial dependence which might influence 

BME accuracy. It is clear that when data is 

highly skewed, variogram becomes erratic and 

is difficult to model (Kerry & Oliver, 2007). In 

this review, 25.4% of articles published used 

small sample sizes that might not allow 

variogram to yield accurate results. Large 

samples are costly and time consuming, 

therefore recommending large sample to reach 

optimal variogram estimation can be an 

obstacle to the large adoption of this method 

(Lark, 2000). Also, when sample sizes 

increase, BME computation becomes difficult 

especially for non-gaussian variables (Cao et 

al., 2014). However, among the articles 

reviewed, there have been no study fully 

investigating empirically BME robustness. 

Therefore, there is need for an empirical 

evaluation of the effect of sample size, 

skewness, and spatial dependency structure on 

BME prediction. 
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