Characterization of the vegetation of the submontane forest of the kala massif in Cameroon

MADIAPEVO Stephane Nazaire ${ }^{1}$, WOROWOUNGA Xavier ${ }^{2 *}$, SEMBOLI Olivia ${ }^{2,3}$, NDOTAR Michel ${ }^{4}$.
${ }^{1}$ Faculty of Sciences, University of Bangui, Central African Republic
${ }^{2}$ Laboratoire d'Architecture, d'Analyse et Réactivité des Substances Naturelles (LAARSN), Facult'e des Sciences, Universit'e de Bangui, BP 908, Bangui, Central African Republic
${ }^{3}$ Laboratoire de biodiversité végétale et fongique, République Centrafricaine
${ }^{4}$ Ecole Normale Supérieure, University of Bangui, Central African Republic.
*Corresponding author: worowoungax @yahoo.fr; worowoungax@gmail.com

Submission 04 $4^{\text {th }}$ September 2023. Published online at https://www.m.elewa.org/Journals/ on $31^{\text {st }}$ October 2023. https://doi.org/10.35759/JABs.190.11

Abstract

Objective: The main objective of this study conducted from January to February 2023 is to describe the spatial heterogeneity of the vegetation of the submontane forest of the Massif Kala in Cameroon through the identification and characterization of the flora and plant groups present. This study also highlights the sociological organization of the forest vegetation and contributes to broaden the phytosociological knowledge which still remains elementary on the vegetation of the forest ecosystems of the highlands of Cameroon. Methodology and Results: The surveys are made by plots of $100 \mathrm{~m} \times 25\left(2500 \mathrm{~m}^{2}\right)$ and the lists of specific sets of individuals whose diameter is greater than or equal to 1 cm , and those whose diameter at breast height $(\mathrm{dbh}) \geq 10 \mathrm{~cm}$, are established. The analyses are based on data from 21 phytosociological surveys, carried out through the facies of the vegetation of the Kala massif. Based on the partition of the records by Detrended Correspondence Analysis and an Ascending Hierarchical Classification, three plant groups were respectively individualized, characterized and classified in the higher syntaxons (class, order and alliance). This is the class of StrombosioParinarietea Lebun \& Gilbert 1954, Erythrophleetea africani Schmitz 1963, MusangoTerminalietea Lebun \& Gilbert 1954. In the forest of the Kala massif, the typology of the vegetation obeys a gradient of humidity and temperature. The anthropization and the edge effect clearly mark the biological diversity of the three plant groups. The individualized plant groups explain the spatial heterogeneity within the same plant formation of the Kala massif. Conclusion and application of resulta application of results: From the matrix of 21 readings and 211 listed species (Appendix 1), we highlighted three (3) groups of plants. based on the relative frequencies of species (Fig.3). The results obtained are effective contributions to scientific research. They serve as avenues for similar or comparative studies of the flora of the Central African Republic.

Keywords: plant group, biological diversity, spatial heterogeneity, vegetation, anthropization, Cameroon.

INTRODUCTION

After the Amazon, the Congo Basin is made up of a large forest that occupies a large area (Talbott, 1993; FAO, 1995). Cameroon's great forest contains the most diverse ecosystems (Alpert, 1993). Altitudinally, these forests are classified as low and medium altitude forests, submontane forests and montane forests (Letouzey, 1985). In Cameroon, as in many other tropical countries, the last 20 years have been marked by high rates of deforestation and forest degradation, linked to the expansion of agriculture, population growth and development activities. In general, (FAO, 1995). In the Kala massif, the area of the forest sector is in perfect decline. Indeed, the massif contains high altitude vegetation around 1000 m , a transition zone that can be described as a submontane stage (Letouzey, 1968). The altitudinal environment is a very mixed environment where various types of vegetation develop. These types of vegetation vary from one geographical area to another. In the
specific case of the Kala massif, it is interesting, within the framework of environmental planning and space management, to inventory and describe the different types of vegetation as well as the biodiversity which develops there with these types of vegetation. The central hypothesis states that the existence of plant communities reflects the spatial heterogeneity of forest vegetation according to ecological parameters (Aoudji et al., 2011). The main objective of this study is to describe the spatial heterogeneity of the vegetation of the forest of the Kala massif. The specific objectives are, among other things, to identify the plant groups present and to characterize them instantly on the analysis of their specific diversity and their respective sociological organization. Indeed, plant groups constitute complexes with the value of phytocenoses which are of interest not only to foresters, but also to scientists (Bangirinama et al., 2010).

Photo 1: Nephelophilic forest of Kala (Source: Madiapevo, 2023). (1st plan): Ecosystem with a fragile ecology due to the outcrops of rocks on which in places, the thin layer of soil can only support herbaceous vegetation, and a forest in the background.

METHODOLOGY

Presentation of the study site: Cameroon is located in Central Africa ($1^{\circ} 40^{\prime}$ and $13^{\circ} 05^{\prime} \mathrm{N}$; $8^{\circ} 30^{\prime}$ and $16^{\circ} 10^{\prime} \mathrm{E}$) with an area of 475,000 km^{2}. It shares 4700 km with Nigeria, Equatorial Guinea, Gabon, Congo, Central African Republic and Chad. The Yaoundé massif extends from North to South and from East to West over less than one degree: $3^{\circ} 42$ and $4^{\circ} 05^{\prime}$ North latitude, $11^{\circ} 17{ }^{\prime}$ and $11^{\circ} 35{ }^{\prime}$ East longitude. The Kala massif extends from North to South and from East to West between $3^{\circ} 42^{\prime}$ and $4^{\circ} 05^{\prime}$ North latitude, $11^{\circ} 17^{\prime}$ and $11^{\circ} 35^{\prime}$ East longitude. To the south-west of the Yaoundé region, the Kala massif has an SSWNNE orientation over 40 km in length and 35 km in width. It is located in the village Kala in the Center region of Cameroon, located in the district of Mbankomo, department of Méfou-et-Akono. It includes three high peaks over 1100 m: Mount Kala itself (1128 m); Mount Nkol nlong (1156 m); Mount Nkol mylon (1100 m). Added to this is Mount Nkol byon whose altitude does not exceed 1100 m . These hills are geographically close and are located in the southwest of the Yaounde region in the same phytogeographical district of White (1983). The generally undulating relief is traversed by close and shallow valleys through
which flow small streams. The Kala massif, like the entire area covered by the so-called Congolese forest in Cameroon (Letouzey, 1968) is located on the Precambrian plateau. All of the forests in this massif are made up of two-mica or biotite-only brecciated gneiss (Champetier, 1959). The climate is of the subequatorial type with an equatorial tendency, western subtype with a short accentuated dry season (Schnell, 1970). Precipitation is quite abundant with an annual average of 1800 mm . The annual average temperature is $23.8^{\circ} \mathrm{C}$. The forest is of the submontane type of the order of Garcinietalia (Noumi, 1998). In Kala, the presence of cocoa plantations, food crops, the current fire regime and the illegal harvesting of natural plant resources testify to human activities on the slopes of the Kala massif. Under these conditions, the area of the forest sector decreases and their biodiversity continues to erode (Nzigidahera, 2009). Livestock farming remains traditional where the animals live in free grazing in nature, to which is added poultry farming of a purely economic nature. In 1965, the Kala village had 285 inhabitants, mainly of the Ewondo ethnic group. In 2018, the number rose to 309 inhabitants.

Fig.2: Map of the geographical location of the study site.

Sampling method: In the context of this study, the technique used for the botanical inventories was the Lejoly plot sampling method (1995). This method, considered suitable, made it possible to delimit the sampling areas and to make a rapid qualitative and quantitative description of the flora. It also made it possible to collect the maximum amount of spatial information without measurement constraints. The inventories were made in 21 rectangular plots 100 m long and 25 m wide. These strips constituted the sample plots of $2500 \mathrm{~m}^{2}(0.25 \mathrm{ha})$. That is a total of 5.25 ha . A 100 m long path was drawn inside each plot. On either side of the layon, trees with dbh (diameter at breast height) ≥ 10 cm were counted over a distance of 12.5 m . Shrubs ($\mathrm{dbh}<10 \mathrm{~cm}$) were surveyed on subplots of $12.5 \times 10 \mathrm{~m}^{2}$ area along the traced path. The scientific determination of the species was carried out using the criteria defined by Normand (1964). For the three (3) forests, the identification of the plant groups constituting the vegetation was made thanks to the ecosociological groups distinguished in tropical Africa (Schnell, 1952; Lebrun and Gilbert, 1954) and according to the CEPS classification system (Delpech, 2006). Only classes, orders and alliances are retained in this work.

Data analysis methods: The determination of the plant groups was made by Detrended Correspondence Analysis (DCA) and an Ascending Hierarchical Classification (CHA) with the MVSP 3.22 software (Multi-Variate Statistical Package). This technique provides us with a dendrogram discriminating plant groups. Several indices of a use are used to highlight the specific diversity of plant groups. These specific mathematical models are among others:

- Sorensen's similarity index (1948) was used to measure the resemblance of the three identified plant groups. This index is given by the following formula (1):
$\mathrm{K}=(2 \mathrm{c} / \mathrm{a}+\mathrm{b}) \times 100$
where c is the number of species common to the two groups compared, a and b are the numbers of species in group (1) and group (2).
- The Margalef index (Rmg) (Magurran, 2004) was used to compare the specific diversity of plant communities. This index is obtained by the following formula (2):
$\operatorname{Rmg}=\mathrm{S}-1 / \ln (\mathrm{N})$
where S is the species richness and N is the number of individuals
- The Shannon, Weaver (1949) (ISH) diversity index is expressed as a function of the
proportions of each species in bits. Formula (3) is as follows:
$I S H=\sum\left(N i / N L^{2} g_{2} N i / N\right)$
where Ni is the number of individuals of species i and N the number of individuals of the species present.
- Simpson's Index (1949) expresses the probability that two individuals taken at random from the stand under study belong to the same species. Formula (4) is as follows:

RESULTS

Characterization of plant groups in the forest of the Kala massif
Determination of plant groups: Starting from the matrix of 21 readings and 211 listed species (Appendix 1), three (3) plant groups were highlighted on the basis of the relative frequencies of the species (Fig.3). The level of similarity of 23 considered for the definition of these groupings made it possible to obtain the maximum possible. The criterion of the stratification of the readings and the field
$\mathrm{D}^{\prime}=\sum(\mathrm{Ni} / \mathrm{N})^{2}$
This index expresses the sum of the proportions of all the species listed.

The Piélou (1966) evenness index makes it possible to account for the distribution of species in the sample. This index is obtained by the following formula (5):
$\mathrm{R}=\mathrm{H} / \mathrm{H}_{\max }$
where H corresponds to the observed diversity and Hmax corresponds to the maximum diversity.
observations guided the determination of the vegetation zone corresponding to each of the 3 individualized groups:

- Group 1 of the surveys corresponds to the submontane forest on the steep slope (Gr 1);
- Group 2 of the surveys corresponds to the forest at low and medium altitudes rising in the submontane stage (Gr 2);
- Group 3 of the surveys corresponds to the submontane forest on the steep slope (Gr 3).

Legend: R is the readings corresponding to the forest, Gr represents the group of surveys corresponding to the forest. Fig.3: Arrangement of the three (3) individualized groupings of the Kala forest on a dendrogram

Ecological determinism of individualized plant groups: The spatial distribution of the individualized groupings is represented on the plan (Fig.4). The first two axes of the DCA express the gradients of the ecological
parameters. The ecological significance of the two axes is explained by field observations, the stratification of surveys and the ecology of characteristic species.

Fig.4:. Representation of the distribution of plant groups in the plane of axes 1 and 2 of the DCA. Axis 1 represents the increasing gradient of anthropization while axis 2 expresses the increasing gradient of humidity.

In the present case, no reading is placed on the negative side of axis 1 (on the abscissa), relative to the less disturbed core of the forest. On the positive side of this same axis, the statements forming group 1 (virgin forest with Aulacocalyx caudata), group 2 (wooded savannah meadow of Nkol nlong and forestplantation edges) corresponding to the areas more degraded by forest activities are distributed. Human resources, agriculture, illicit resource extraction and fire, group 3 (vegetation on the tops of hills) corresponding to areas moderately disturbed by human activities. Obviously, axis 1 expresses an increasing gradient of disturbances of anthropic origin exerted from the forest towards its peripheral zones. On the ordinate, on the negative side of axis 2 , are positioned 2 statements from group 3 (R3 and R4) and 5 statements from group 2 (R16, R17, R18, R20, R21) corresponding to the dry areas of the forest. On the other hand, on the positive side of this axis are the elevations forming groupings 1 and certain elevations of groupings 2 and 3 . Grouping 1 corresponds to the nephelophilic forest. Axis 2 represents an increasing gradient of atmospheric humidity,
from that provided in the valleys incised by tributaries of the large Akomo, Ngobo, Nkadip and Yegue rivers towards the zone of mist and clouds which represents the upper part (from 1400 m to $1800-2000 \mathrm{~m}$) of the GuineoCongolese submontane forest. These mists and clouds begin in the Yaoundé area at an altitude of 1000 m (Letouzey, 1985).
Biological diversity of plant communities: Values for species richness and other indices of diversity and evenness are provided in Table I.) is more diverse than the other two. For this group, the value of the Margalef index is higher ($\mathrm{Rmg}=23.86$) compared to those of the other groups. Grouping 2 corresponding to the zone which presents various stages of degradation of the zone of the virgin forest is less diversified because it presents a lower value of the Margalef index ($\mathrm{Rmg}=9.50$). The values of the Piélou index are greater than 0.5 for groups 2 and 3 . This means that, in the two groups, the species share the ecological niches relatively equitably. The Piélou equitability value of group 1 is less than 0.5 . The virgin forest on steep slope does not share the ecological niche with the other 2 groupings.

Table 1: Biodiversity indices of plant communities in the Kala forest

Groupings	Number of readings	\boldsymbol{S}	\boldsymbol{H}	$\boldsymbol{R}_{\boldsymbol{m} \boldsymbol{g}}$	\boldsymbol{R}
Group 1	2	111	2.43	15.21	0.36
Group 2	15	54	4.89	9.50	0.85
Group 3	4	191	4.70	23.86	0.62

S: Specific richness; H: Shannon-Weaver diversity index; Rmg: Margalef diversity index; R: Piélou equity index

The degree of similarity between the three plant groups compared two by two by Sorensen's similarity index is shown in Table 2. The floristic affinity between the 3 groups is greater than 50 between groups 1 and 2 , less
than 50% between group 3 and 1 , then 3 and 2 . In these latter cases, the Sorensen indices show that each individualized group constitutes a unit relatively distinct from the others.

Table 2: Sørensen similarity values (in \%) between pairs of plant groups in the Kala forest

	Group 1	Group 2	Group 3
Group 1	100		
Group 2	60.3%	100	
Group 3	40.2%	39.3%	100

Identification of ecosociological groups: In the forest of the Kala massif, the classification of plant groups in the higher syntaxa gives 3 classes, three orders and three alliances:

- Class of Strombosio-Parinarietea Lebrun \& Gilbert 1954, from equatorial rainforests; Order of Garcinietalia Noumi 1998, Alliance of Garcinion Noumi 1998; represented by group 1. Its edition is the north-eastern slope of Nkol byon, with steep slopes, carrying a virgin
forest with Aulacocalyx caudata. The edition is rich in hygromesothermal species such as Allanblackia gabonensis, Aulacocalyx caudata, Aulacocalyx jasmifolia, Aulacocalyx taboltii, Cola verticillata, Garcinia mannii, Garcina smeathmannii, Leplaea mayombensis, Myrianthus libericus and Santiria trimera. The edition is also penetrated by hygro-oligothermal species with Carapa grandiflora, Memecylon polyanthemos.

Fig.5: Group of submontane rain forest.
A: forest undergrowth; B: stilt roots at the summit of Mount Kala; C: slice of Allanblackia gabonensis, brittle, reddish on the outside and yellow on the inside, exuding a yellow latex.

- Class of Erythrophleetea africani Schmitz 1963, from the Guineo-SudanoZambézian tropical forests; Ordre of

Julbernardio-Brachystegietalia spiciformis Schmitz 1988, Alliance of BierlinioMarquesion Lebrun \& Gilbert 1954,
characterizing the whole open forest dominated by Brachystegia and Uapaca tree species with Erythrophleum ivorense, Paraberlinia bifoliolata (Julbernarda pellegriniana), Tetraberlinia bifoliolata (Julbernardia bifoliolata). The class is represented by cluster 2 . Its edition is the
summit of Nkol nlong (or hill covered with grassy meadow in the local language). In this site, Mr. Mesmer (a Swiss national) built a hut, as one of the eloquent signs of the phases of alteration, corresponding to regressive series which lead to grassy savannah formations or dotted with residual shrubs (Fig.6).

Fig.6: Nkol nlong thinned (trophophilic) forest.

In the background in A and B , phases of alteration, corresponding to regressive series which lead to the grassy savannah formation dotted with residual shrubs.

- Class of Musango-terminalietea Lebrun \& Gilbert 1954, forests of the GuineoMalagasy liaison group, with very wide Sudano-Zambézian penetration; Order of

Musangetalia Lebrun and Gilbert 1954, Alliance of Caloncobo-Tremion Lebrun and Gilbert 1954. The class is represented by grouping 3 of the summit forests of Nkol byon, Kala and Nkol mylon. The class is dominated by species like Pycnanthus angolensis, Albizia adianthifolia, Elaeis guineensis, Nauclea latifolia, Nauclea diderrichi (Fig.7).

Fig.7: Secondary forest resulting from the degradation of the submontane ombrophile forest.
A) Forest regrowth with Costusafer and Chromolaena odorata (Asteraceae); (B) Secondary forest showing a foot of Chlorophora excelsa in the foreground.

DISCUSSION

The study of plant groups is a fundamental source of important basic data for the conservation, development and sustainable management of natural ecosystems. But
frequently, in some cases, the ecological interpretation of the identified groups may seem meticulous (Bangirinama et al., 2010; Hakizimana et al., 2012). The individual plant
groups in the Kala forest explain the spatial heterogeneity of this forest ecosystem. The analysis of this spatial heterogeneity shows that the Kala forest is subdivided into three floristically distinct zones:

- the core of the forest remained virgin, is on a slope and dominated by species of small trees like Aulacocalyx preussii, Garcinia mannii, Garcinia smeathmannii, Aulacocalyx caudata and Aulacocalyx jasmiflora (group 1);
- the degraded part of the forest is the summit of Nkol nlong, nephelophilous, where low and medium altitude trees dominate, those of mountain or sub-mintagnard species (group 2). The open, undiversified, ubiquitous forest is dominated by Allanblackia, Brachystegia, Erythrophleum, Garcinia, Gilbertiodendron, Uapaca;
- the formations of the summits of Kala, Nkol byon, Nkol mylon, surrounded by cocoa plantations, plantations and orchards which rise to $800-1000 \mathrm{~m}$ in altitude, form group 3 where Pycnanthus angolensis, Anthocleista schweinfurtii, Myrianthus arboreus dominate. The organization of the Kala forest is manifested in the horizontal plane by a more or less marked heterogeneity, such as the open forest zone alternating with zones covered with more or less dense forest cores, and an agglomerated-type distribution, individuals. This characteristic, confirmed by the low values of the Sorensen index for groups 1 and 3 and groups 2 and 3 and a value well above 50% for groups 1 and 2 (Table 2) had already been underlined by the studies on the humid intertropical forests carried out by Oldeman (1990), Hakizimana et al., 2012. The values of the Piélou evenness index show that the species of the three plant groups do not share ecological niches equitably. Group 2 and 3 have high values compared to group 1 with a lower value; 0.36. (Gillet, 2000). Considering the factors of the. ecological determinism (the gradient of humidity and that of anthropization), we note that groups 1 and 2 are floristically close, on the one hand, and
that, on the other hand, groups 2 and 3 are floristically close (Fig. 3 and 4). The strong floristic similarity between the identified plant groups (group 1 and 2) is confirmed by the high value of the Sorensen similarity index. This suggests that the spatial heterogeneity of facies observed in the Kala forest is either linked to any ecological gradient, or could be explained by the history of localized degradation of the forest. In the dense Kala forest, the floristic diversity depends on the landscape unit considered. We consider that the central core of the less disturbed forest (cluster 1) represents the average species diversification (Table 1). It is rich in forest species such as Allanblackia gabonensis, Coelocaryon preussii, Dacryodes macrophylla, Guarea thompsonii, Leplaea mayombensis, Pycnanthus angolensis, Ricinodendron heudelotii, Strombosia grandifolia, and Trilepisium madagascariensis. These species ensure the development of a significant lower tree stratum consisting of Aulacocalyx jasmiflora, Aulacocalyx talbotii, Coffea brevipes, Garcinia smeathmannii, Myrianthus arboreus, Rauvolfia macrophylla, Tabernaemontana crassa. The zone of forest alteration phases (group 2) is less diversified. We observe that its vegetation keeps the same bottom of the floristic procession and a core of common species. Similar conclusions were made by Nzigidahera (2000). The secondary education group is the most diversified. This order of increasing diversity was expected. Indeed, some authors (Burel and Baudry, 1999) affirm that, up to a certain threshold, disturbances increase the diversity of an ecosystem. In addition, these authors indicate that disturbances are intense in edge zones which tend to diversify. The edge effect therefore induces a change in facies by promoting both the heterogeneous development of certain forest species and heliophilous species, ruderal species, segetal species, adapted to various disturbances linked to trampling, water stress
and human activities (Harper et al., 2005) Plant group 2 has the lowest value of the Margalef diversity index (IDM) (9.50) (Table 1), although this includes 15 records from the interior of the forest. On the other hand, plant group 3, which includes four peripheral statements, has an IDM value (23.86), higher than for plant group 1 (IDM $=15.21$) which includes 2 statements from the interior of the forest. We can therefore conclude that, for this forest, the overall floristic composition is not significantly affected by the edge effect (Harper et al., 2005). The plant groups identified in the Kala forest can be linked to those already described by other authors. The grouping of Aulacocalyx spp., Garcinia spp., and Albizia gummifera, Allanblackia gabonensis, Leplaea mayombensis, encountered on the northeast slope of Nkol byon is similar to that described on the summits of the Nkolobot hills of the Mbam minkom massif by Noumi (1998) and the one encountered in the Kouoghap gallery forest of the Batoufam village by Makemteu and Noumi (2015). Finally, the dominance of species of Brachystegia (Brachystegia laurenti),

Distemonanthus Gilbertiodendron brachystegioides, Paraberlinia bifoliolata, Tetraberlinia bifoliolata and Uapaca togoensis as well as Pycnanthus angolensis accompanied by Spathodea campanulata represent respectively the tropophilic and periguinean identity of the forest at the summit of Nkol nlong of the Kala massif. The group with Pycnanthus angolensis, Albizia adianthifolia and that with Pycnanthus angolensis, Anthocleista schweinfurthii and Treculia africana, individualized in the zone at the edge of the forest of the Kala massif are to be compared to the secondary formations described on the summit of the Minloua inseberg by Noumi (2010). These descriptions and names corroborate the conclusions of the studies carried out by Malaisse (1968) and Lewalle (1972). In addition, the presence of species like Albizia adianthifolia, Elaeis guineensis, Myrianthus arboreus and pyrophyte species like Combretum sp. are eloquent signs of the imprint of human action (trampling, agriculture, livestock, fishing) and the secondaryization of Kala forests.

Strombosio parinarietea, in the tree layer, Cola verticillata, tabernaemontana crassa, Garcinia smeathmannii, Garcinia mannii, Aulacocalyx jasminiflora, Aulacocalyx talbotii in the shrub layer;

- Class of Erythrophleetea africani Schmitz 1963, from the Guineo-SudanoZambézian tropical forests, with a representative at the top of the Nkol nlong hill, characterized by species poverty marking this degraded forest, the whole of which is dominated by tree species of Brachystegia and Uapaca with Erythrophleum ivorense, Paraberlinia bifoliolata (Julbernarda pellegriniana), Tetraberlinia bifoliolata (Julbernardia bifoliolata);
- Class of Musango-terminalietea Lebrun \& Gilbert 1954, forests of the Guineo-

Malagasy liaison group, with very wide Sudano-Zambézian penetration, the class is dominated by species such as Pycnanthus angolensis, Albizia adianthifolia, Elaeis guineensis, Nauclea latifolia, Nauclea diderrichii.
In relation to the results obtained, it emerges from research perspectives that should be undertaken in the near future. These include, in particular:

- analysis, through diachronic observations, of the dynamic relationships in

BIBLIOGRAPHY

Alpert P. 1993. Conserving biodiversity in Cameroon, Ambio, 22 (1): 44-49.
Aoudji AKN, Adégbidi A, Ganglo JC, Agbo V, Yêvidé ASI, De Cannière C, Lebailly Ph. 2011. Satisfaction across urban consumers of smallholderproduced teak (Tectona grandis L.f.) poles in South Benin. Forest Policy and Economics 13 : 642-651.
Bangirinama F. Bigendako MJ. Lejoly J. Noret N. De Cannière C, Bogaert J. 2010. Definition of successional indices for characterizing the process of postcultural succession in Burundi.
Burel F et acques Baudry J. 1999. Écologie du paysage. Concepts, méthodes et applications: Paris, TEC \& DOC, 362 p.

Champetier De Ribes G. Reyre D. 1959. Explanatory notice between Yaounde West. Pub. leave Direct. Min. and Geol. from Cameroon Yaounde. Yaounde West investigation Map. 30 p .
FAO. 1995. Forest resources assessment 1990, Survey of tropical forest cover and study of change processes, Rome, FAO Forestry Paper No, 130 p.
Gillet F. 2000. Integrated synusial phytosociology. Methodological guide. 4th revised and corrected edition. Neuchâ-tel, Switzerland, University of Neuchâtel, Institute of Botany,
time and space between the plant groups that have been defined within the vegetation of the forest;

- analysis of life traits and ecology of the main tree species in the two forests;
- the study of natural regeneration mechanisms, mortality, growth and recruitment of tree species to better understand the dynamics of natural renewal of the Kala forest.

Documents of the Plant Ecology Laboratory 1, 68 p.
Harper K, Macdonald SE, Burton PJ, Chen J. 2005. Edge Influence on Forest Structure and Composition in Fragmented Landscapes. Conservation Biology 19(3):768-782.
Hakizimana P, Bangirinama F, Habonimana B, Bogaert J. 2012. Characterization of vegetation in the Dense forest of Kigwena and the Miombo Forest of Rumonge, in Burundi. Scientific Bulletin of the National Institute for the Environment and Nature Conservation 66(312):43-52.
Lebrun J. 1935. The Forest Essences of the Belgian Congo. II. The Forest Species of the Mountainous Regions of the Eastern Congo. INEAC publications, scientific series $n^{\circ} 1$, Brussels, 262 p.
Lebrun J, \& Gilbert G. 1954. An ecological classification of the forests of the Congo. Pub. I.N.E.A. Science Series 63: 89 p .
Lebrun J. 1947. The vegetation of the alluvial plain south of Lake Eduard Inst. National Parks Belgian Congo, Expl. Nat. Albert, mission J. Lebrun (19371938) 2 vols. invoice 1.800 p.

Lebrun J. 1960. Studies on the flora and vegetation of the lava fields north of Lake Kivu. Inst. National Parks

Belgian Congo, Expl. Park. Nat. Albert, Mission J. Lebrun, fasc. 2: 352p.
Lebrun JPS. Stork AL. 1997. Induction of the flowering plants of tropical Africa, 4 Volumes. Editions of the Conservatories and Garden Botanies of the City of Geneva, Switzerland.
Lejoly J. 1995. Study on the structure of the community of small diurnal primates, Odzala National Park, Republic of Congo, Ecofac Project-Congo component, preliminary report, 26p.
Lejoly J. 1996. Plant biodiversity in the Odzala National Park (Congo), AGRECOCTFT, Brussels, 114 p.
Lejoly J. 1996. Regional synthesis on the plant biodiversity of woody plants in the 6 sites of the Ecofac project in Central Africa, Technical Report, Brussels, 81 p.

Lejoly J. 1996. Use of the transect method for the study of biodiversity in the Ngotto forest conservation area (Central African Republic), Ecofac Project, AGRECO-CTFT, Brussels, 114p.
Lejoly J. 1995. Biodiversity of woody plants on the Alat-Makay transect in the Dja wildlife reserve (Cameron), technical report, Ecofac project, 95 p.
Letouzey R. 1972. Manual of tropical Africa forest botany, CTFC, Nogent.
Letouzey R. 1968. Phytogeographic study of Cameroon. Ed. P. Lechevalier, Paris, 61 p.
Letouzey R. 1968. Phytogeographic study of Cameroon. Ed. P. Lechevalier, Paris 5, 511 p.
Letouzey R. 1968. Phytogeographic study of Cameroon. Encycl. Biol. Ed. P. Lechevalier, 511p.
Letouzey R. 1979. Flora of Cameroon, Phytogeographical Documents No. 2, CNRS, Paris.

Letouzey R. 1982. Manual of forest botany, tropical Africa, Thome 1, CTFT, Toulouse, 173p.
Letouzey R. 1985. Notice of the phytogeographical map at $1 / 500,000$, Domain of the evergreen dense humid forest, Institute of the International Map of Vegetation, Toulouse, France: 27-62.
Letouzey R. 1985. Notice of the phytogeographical map of Cameroon at 1: 500,000, IRA, Yaoundé, Institute of the International Map of Vegetation, Toulouse, 240 p .
Lewalle J. 1972. The stages of vegetation in western Burundi. Bulletin of the National Botanical Garden of Belgium, 42 (1/2): 1-247.
Makemteu J. 2017. Phytosociological study of the Kouoghap sacred forest of Batoufam (Western Cameroon). Ph/D doctoral thesis. University of Yaoundé I. 147p.

Makemteu J, Noumi E. 2015. The submountainous sacred Kouoghap forest of the Batoufam village, West Cameroon; Phytosociological Approach. International Research Journal of Natural and Applied Sciences Vol. 2, Issue 11: 2349-4077.
Malaisse F. 1968. Ecological study of the Luanza river and its basin. Doctoral thesis, Official University of Congo, Lubumbashi, 473 p.
Normand MD. 1964. Identification of trees and their woods of the main forest species in the Central African Republic, 78 p .
Noumi E. \& Amougou A., 2003. Crassulescent submontane thicket with Euphorbiakamerunica of the Minloua inselberg (Yaoundé, Cameroon), J. Cam. Acad. Sc. 3(3): 185 - 201 p.
Noumi E. \& Tagne Tiam G. A. 2016. Floristic Inventory of Woody Species of the Oku Sacred Forest in the North-West Cameroon, Theoretical and

Philosophical Approach, International Journal of Current Research in Biosciences and Plant Biology 3(1): 2349-8080.
Noumi E., 1998. The transition forest with Garcinia spp, Nkolobot hills (Yaoundé Cameroon region), Belg. Day. Bot 130(2): 198-220.
Noumi E. 2003. Batoufam, a village in a Caldera, ICSS, Yaoundé, 35p.
Noumi E., 2005. Flora and plant communities of the Minloua inselberg and the eastern region bordering the Yaoundé massif. State doctoral thesis, University of Yaoundé I, 271 p .
Noumi E. 2008. Didactics of life and earth sciences (SVT) illustrated by examples and docimology: Handbook for high school and college teachers, Yaoundé: Edition GIC- ICSSC, (Reprography), 55p.
Noumi E. 2012. Ligneous flora diversity of a submountain forest of West Cameroon: The Kouoghap sacral forest of the village Batoufam, Journal of Ecology and the Natural Environment 4(1): 828.

Noumi E. 2013. Floristic inventory of woody species in the Manengouba mountain forest, Cameroon, Journal of Biology and Life Science 4 (2): 282-309.
Noumi E. 2015. Floristic Structure and Diversity of a Tropical Sub-Montane Evergreen Forest, In the Mbam Minkom Massif (Western Yaoundé), Journal of Biology and Life Science 6 (1): 149-193.

Nzigidahera B. 2000. Analysis of national plant biological diversity and identification of priorities for its conservation. Bujumbura, Burundi, National Institute for the Environment and Nature Conservation, 126 p.
Oldeman RAA. 1990. Forests: element of silvology, Berlin, Heidelberg: Springer Verlag, 624p.

Piélou EC. 1966. Species diversity and pattern diversity in the study of ecological succession. Journal of Theoretical Biology, 10: 370-383.
Schmitz A. 1963. Overview of the plant communities of Katanga. Bull. Soc. Roy. Bot. belg. 96: 233-447.
Schmitz A. 1971. The vegetation of the Lubumbashi plain (upper Katanga). Publ. INEAC, Ser. Scientific. 388p.
Schmitz A., 1988. Revision of described plant groups from Zaire, Rwanda and Burundi. Tervuren, Belgium, Royal Museum for Central Africa, Annales Sciences Economiques, vol. 17: 315 p.
Schnell R. 1952. Vegetation and flora of the mountainous region of Nimba (French West Africa), Memoir of the French Institute of Black Africa, 22: 604 p .
Schnell R. 1952. Vegetation and flora of the mountainous region of Nimba, Mémoire IFAN, Dakar, 640 p.
Schnell R., 1971. Introduction to the phytogeography of tropical countries. Environments and plant groups, Gauthier-Villars, Paris, 452 p, Vol. II: $503-951$ p.
Schnell R., 1977. Introduction to the phytogeography of tropical countries, Vol, III and IV: Flora and vegetation of tropical Africa, Gauthier - Villars ed., Paris, 459 p and 378 p.
Schnell R., 1987. The flora and vegetation of tropical America. Volume I. General, flora, forest formations and mesophilic formations, ed. Masson, New York, 480 p.
Schnell R., 1987. The flora and vegetation of tropical America. Volume II. Forest formations, mountain vegetation, azonal and extra-zonal vegetation and conclusions, ed. Masson, New York, 447 p.
Schnell, R., 1970. Introduction to the Phytogeography of the Tropical

Countries: The General Problems 1. Gauthier-Villars, Paris. 499p.
Shannon C. E., Weaver W., 1949. The mathematical theory of communication, Urbana Univ, Press, Illinois, 117-127 p.
Sorensen T. 1948. A method of establishing group of species content and its application to analyze of the vegetation on Danish common, Kong, dance, Vident 4: 1-34 p.
Talbott K. 1993. Central Africa's forest, the second greatest forest system on earth, World Resources Institute, Washington.
White F. 1979. The Guineo-Congolian region and its relationships to other phytochoria. Bull. Garden. Bot. Nat. belg. 40: 11-55p.
White F. 1986. The vegetation of Africa, Memoir accompanying the map of the vegetation of Africa, UNESCOAETFAT/UNSO (French translation by P, Bamps), Paris ORSTOMUNESCO, 384 p.
White F. 1992. Vegetation history and logging disturbance: effects of rain forest mammals in the Lope reserve, Gabon, Thesis submitted for degree of Ph, D, University of Edinburgh, 250 p.

Annex 1: Phytosociological presentation of the floristic list of the Kala massif forest, with sequences of the 21 surveys carried out and phytosociologicalsyntaxa

Families	TB	TP	Stage	UP	TF	TD	Species	$\begin{aligned} & \mathrm{R} \\ & 1 \end{aligned}$	$\begin{aligned} & \mathrm{R} \\ & 2 \end{aligned}$	$\begin{aligned} & \mathrm{R} \\ & 3 \end{aligned}$	$\begin{aligned} & \mathrm{R} \\ & 4 \end{aligned}$	$\begin{aligned} & \mathrm{R} \\ & 5 \end{aligned}$	$\begin{aligned} & \mathrm{R} \\ & 6 \end{aligned}$	$\begin{aligned} & \mathrm{R} \\ & 7 \end{aligned}$	$\begin{aligned} & \mathrm{R} \\ & 8 \end{aligned}$	$\begin{aligned} & \mathrm{R} \\ & 9 \end{aligned}$	R 1 0	$\begin{aligned} & \hline \mathrm{R} \\ & 1 \\ & 1 \end{aligned}$	R 1 2 2	$\begin{aligned} & \mathrm{R} \\ & 1 \\ & 3 \end{aligned}$	$\begin{aligned} & \hline \mathrm{R} \\ & 1 \\ & 4 \end{aligned}$	$\begin{array}{\|l\|} \hline \mathrm{R} \\ 1 \\ 5 \end{array}$	$\begin{array}{\|l\|} \hline \mathrm{R} \\ 1 \\ 6 \end{array}$	$\begin{array}{\|l\|} \hline \mathrm{R} \\ 1 \\ 7 \end{array}$	$\begin{array}{\|c\|} \hline \mathrm{R} \\ 1 \\ 8 \end{array}$	$\begin{array}{\|l\|} \hline \mathrm{R} \\ 1 \\ 9 \end{array}$	$\begin{array}{\|l\|} \hline \mathrm{R} \\ 2 \\ 0 \end{array}$	$\begin{aligned} & \hline \mathrm{R} \\ & 2 \\ & 1 \end{aligned}$	Grand total
Strombosio-Parinarietea Lebrun \& Gilbert 1954																													
Euphorbiace ae	Msph	At	Bm/Sm	Str	Méso	Ballo	Alchornea floribunda Müll. Arg.	2	3	11		3	2																21
Annonaceae	Mgph	G	Bm/Sm	Str	Macro	Sarco	Anonidium mannii (Oliv.) Engl. et Diels.		24	22	5	19	10		1		2		1	2		3	6	6	1	6	6	5	119
Euphorbiace ae	Mcph	G	Bm	Str	Méso	Sarco	Antidesma laciniatum Müll. Arg.	5			1		2																8
Meliaceae	Mcph	Aam	Bm/Sm	Str	Méso	Ballo	Carapa procera DC.	5		6	1	11	5		1					1		1	2	1			1	3	38
Samydaceae	Mcph	At	Bm/Sm	Str	Méso	Ballo	Casearia barteri Jacq.	4	1		3	1	4											1					14
Sterculiaceae	Nnph	G	Bm/Sm	Str	Méso	Sarco	Cola attiensis var. bordardii (Pellegr.) N. Halle	6	6	14	37	25	6																94
Burseraceae	Msph	G	Bm	Str	Méso	Sarco	Dacryodes macrophylla (Oliv.) Lam	18	5	6	1		18				1				1								50
Rubiaceae	Mcph	G	Bm/Sm	Str	Méso	Sarco	Massularia acuminata (K. Schum.) Hoyle	9	3	3		4	9																28
Ochnaceae	Mcph	Bg	Bm	Str	Macro	Sarco	Campylospermum elongatum (Oliv.) Vahl Tiegh	16					2																18
Violaceae	Nnph	G	Bm/Sm	Str	Méso	Ballo	Rinorea oblongifolia (C.h. Wright) Marg. ex chipp		1	8	2																		11
Olacaceae	Msph	G-Sz	Bm/Sm	Str	Méso	Sarco	Strombosia grandifolia Hook. f. ex Benth.	17	13	9		16	17																72
Olacaceae	Msph	Cg	Bm/Sm	Str	Méso	Sarco	Strombosiopsis tetrandra Eng.	9					9																18
Olacaceae	Mcph	G	Bm/Sm	Str	Méso	Sarco	Strombosia pustulata Oliv.	8		3	6		8																25
Rubiaceae	Nnph	Cg	Bm/Sm	Str	Macro	Sarco	Schumanniophyton magnificum Harms			1	10																		11
Moraceae	Mcph	G-Sz	$\begin{array}{\|l} \hline \mathrm{Bm} / \mathrm{S} \\ \mathrm{~m} \end{array}$	Str	Méso	Sarco	Sloetiopsisusambarensis Engler		8																				8
Myristicacea e	Mcph	Cg	Bm/Sm	Str	Méso	Sarco	Staudtia kamerunensis Warb.	9	2		16	7	9					2								1			46
Meliaceae	Mcph	Cg	Bm/Sm	Str	Méso	Ballo	Trichilia rubenscens Oliv.	1	1	5		3	1																11
Piptadeniastro	Celtide	alia Leb	n \& Gilbe	rt 195																									
Apocynaceae	Msph	G	Bm	Pip	Méso	Pogo	Alstonia boonei De Willd.		3	1	5	14																	23
Moraceae	Mcph	G	Bm	Pip	Méso	Sarco	Antiaris toxicaria Lesch.	1	1			5	1																8
Moraceae	Msph	G	Bm	Pip	Méso	Sarco	Antiaris welwitschii Lesch.		3												1				1			1	6
Sapotaceae	Msph	G	Bm	Pip	Méso	Ballo	Blighia welwitschii (Hiern) Radlk.				1	3					2		1										7
Bombacacea e	Msph	G	Bm	Pip	Méso	Ballo	Bombax buonopozense P . Beauv.			3	2																		5

Leguminosae	Mcph	At	Bm	Gilb	Méso	Ballo	Anthonotha macrophylla P. Beauv.			11	2	13		1								1				28
Sterculiaceae	Msph	G-Sz	Bm/Sm	Gilb	Méso	Ballo	Cola ballayi M. Cornu		4	1	22			1	2	2	4			1	3	1	2	2	3	48
Euphorbiace ae	Mcph	G	Bm/Sm	Gilb	Méso	Sarco	Antidesma mambranaceum Müll. Arg.		1			3	3													7
Anacardiace ae	Msph	Cg	Bm	Gilb	Lepto	Sarco	Antrocaryon klaineanum Pierre		1	1	2	2														6
Leguminosae	Mcph	G-Sz	Bm	Gilb	Méso	Baro	Baphiopsis parviflora Benth. et Bak.	2	1			1	2													6
Lauraceae	Mcph	Ca	Bm	Gilb	Méso	Sarco	Beilschmiedia grandifolia (Vahl.) Hutch. et Dalz.				9	8	14													31
Rubiaceae	Chd	Cg	Bm	Gilb	Méso	Sarco	Bertiera adamsii (Hepper) N. Halle	1					1													2
Leguminosae	Msph	Cg	Bm	Gilb	Méso	Ballo	Brachystegia cynemetroides Harms	1	2	5			1													9
Polygalaceae	Msph	Aam	Bm/Sm	Gilb	Méso	Sarco	Carpolobia lutea G. Don.	1	1				1													3
Tiliaceae	Mcph	Aam	Bm	Gilb	Méso	Baro	Christiana africana DC.		2			1						1								4
Sterculiaceae	Msph	Cg	$\mathrm{Bm} / \mathrm{Sm}$	Gilb	Méso	Baro	Cola pachycarpa K. Schum.	4			1	1	4													10
Sterculiaceae	Msph	Cg	Bm/Sm	Gilb	Méso	Baro	Cola rostrata K. Schum.	2					2													4
Rubiaceae	Nnph	Cg	Bm	Gilb	Méso	Sarco	Coffea brevipes Hiern	15	9		2	9	15													50
Leguminosae	Msph	Cg	Bm	Gilb	Méso	$\begin{array}{\|l} \hline \text { Sclér } \\ \text { o } \\ \hline \end{array}$	Crudia gabonensis Pierre ex De Willd.			2	2	1														5
Burseraceae	Msph	G	Bm	Gilb	Méso	Sarco	Dacryodes igangaga Aubr. et Pellegr.				5								1							6
Burseraceae	Msph	Cg	Bm	Gilb	Nano	Sarco	Dacryodes buettneri (Engl.) Lam	1	3		11	3	1													19
Irvingiaceae	Msph	Cg	Bm	Gilb	Méso	Ptéro	Desbordesia glaucescens (Engl.) Vans Tiegh	10	3	2	2	14	10					1								42
Leguminosae	Msph	Cg	Bm	Gilb	Nano	Baro	Dialum bipendense Harms	1	1	5		7	,													15
Leguminosae	Msph	Ca	Bm	Gilb	Méso	Baro	Dialum zenkeri Harms	5	1	4	14	1	5											1		31
Ebenaceae	Mcph	G-Sz	$\mathrm{Bm} / \mathrm{Sm}$	Gilb	Méso	Sarco	Diospyros hoyleana F. White				1	3														4
Ebenaceae	Mcph	G	Bm	Gilb	Méso	Sarco	Diospyros longiflora R. Let.			15	1															16
Ebenaceae	Mcph	G	Bm	Gilb	Méso	Sarco	Diospyros simulans F. White	8	9	3	7	1	8													36
Euphorbiace ae	Msph	Cg	Bm/Sm	Gilb	Méso	Sarco	Drypetes gossweilerii S. Moore	1					1													2
Euphorbiace ae	Msph	Cg	Bm	Gilb	Méso	Sarco	Drypetes klainei Pierre ex Pax	8		1	3	15	8													35
Sapindaceae	Mcph	G	Bm	Gilb	Méso	Sarco	Eriocoelum macrocarpum Gilg.	14	2		10	3	14													43
Vochyliaceae	Msph	Cg	Bm	Gilb	Méso	Ptéro	Erysmadelphus exsul Mildbr.	11			9	2	11													33
Sapotaceae	Msph	G	Bm	Gilb	Méso	Sarco	Gambeya africana (G. Dan. ex Bak.) Pierre.	1	1	2	1	1	1													7
Leguminosae	Msph	Cg	Bm	$\begin{array}{\|c\|} \hline \text { Gil } \\ \hline \end{array}$	Lepto	Ballo	Librevillea klainei Pierre (ex Harms) Hoyle			6																6

Euphorbiace ae	Msph	G	Bm	$\begin{array}{\|l} \hline \text { Gil } \\ \mathrm{b} \\ \hline \end{array}$	Meso	Sarco	Macaranga barteri Müll. Arg.			3	1																	4
Euphorbiace ae	Msph	Cg	Bm	$\begin{array}{\|c} \hline \text { Gil } \\ \hline \end{array}$	Meso	Sarco	Macaranga monandra Müll. Arg.		3		1																	4
Euphorbiace ae	Msph	G	Bm	$\begin{array}{\|l\|} \hline \text { Gil } \\ \hline \\ \hline \end{array}$	Meso	Sarco	Macaranga saccifera Pax					1																1
Euphorbiace ae	Mcph	G	Bm	$\begin{array}{\|l\|} \hline \text { Gil } \\ \hline \end{array}$	Meso	Sarco	Maesobotrya dusenii (Pax) Hutch.		3		1																	4
Euphorbiace ae	Mcph	Cg	Bm	$\begin{array}{\|l\|} \hline \text { Gil } \\ \hline \end{array}$	Meso	Sarco	Maesobotrya klaineana Benth.	1		1			1															3
Clusiaceae	Msph	G-Sz	Bm	$\begin{array}{\|l} \hline \text { Gil } \\ \text { b } \\ \hline \end{array}$	Méso	Sarco	Mammea africana Sabine		1	1																		2
Leguminosae	Msph	Cg	Bm	Gilb	Méso	Ballo	Gilbertiodendron brachystegioides Harms		17	12	8	1																38
Leguminosae	Msph	Cg	Bm	Gilb	Méso	Ballo	Gilbertiodendron preussii Harms		10	4	12	1																27
Tiliaceae	Msph	G	Bm	Gilb	Méso	Ballo	Glyphaea brevis (Sprague) Manachino	4	1	5	12	1	4															27
Annonaceae	Mcph	Cg	Bm/Sm	Gilb	Méso	Sarco	Greenwayodendron suaveolens (Engl. et Diels) Verd.	19	3	1	14		19				1	3	2		1							63
Meliaceae	Msph	G	Bm/Sm	$\begin{array}{\|l\|} \hline \text { Gil } \\ \hline \end{array}$	Méso	Ballo	Guarea cedrata (A. Chev.) Pellegr.			4	1	6		1		3	2	2	2	3	2	2		2	1			31
Irvingiaceae	Msph	G-Sz	Bm	$\begin{array}{\|c} \hline \text { Gil } \\ \mathrm{b} \\ \hline \end{array}$	Méso	Sarco	Klainedoxa gabonensis Pierre ex Engl.	2	9	4	1	1	2	1					2	1			1	1		1		26
Annonaceae	Msph	Cg	Bm	$\begin{array}{\|c} \hline \text { Gil } \\ \text { b } \\ \hline \end{array}$	Méso	Sarco	Isolana hexaloba Engl.	1	1	6		1	1				1	1										12
Rhamnaceae	Msph	G	Bm	$\begin{array}{\|c} \hline \text { Gil } \\ \mathrm{b} \\ \hline \end{array}$	Méso	Sarco	Lasiodiscus mannii Hook. f.			1																		1
Leguminosae	Mcph	Cg	Bm	$\begin{array}{\|l\|} \hline \text { Gil } \\ \mathrm{b} \\ \hline \end{array}$	Méso	Ballo	Milletia sanagana Harms		1	1		2																4
Leguminosae	Msph	Cg	Bm	$\begin{array}{\|c} \hline \text { Gil } \\ \mathrm{b} \\ \hline \end{array}$	Micro	Ballo	Newtonia griffoniana (Baill.) Keay			5																		5
Sapotaceae	Msph	G	Bm	$\begin{array}{\|l} \hline \text { Gil } \\ \mathrm{b} \\ \hline \end{array}$	Méso	Sarco	Omphalocarpum procerum P. Beauv.	1		1	1	1	1		1	1	1		1									9
Pandaceae	Msph	G	Bm	$\begin{array}{\|l} \hline \text { Gil } \\ \mathrm{b} \\ \hline \end{array}$	Méso	Sarco	Panda oleosa Pierre	2					2															4
Leguminosae	Msph	G	Bm	$\begin{array}{\|c} \hline \text { Gil } \\ \mathrm{b} \\ \hline \end{array}$	Méso	Ptéro	Paraberlinia bifoliolata Pellegr.		2		4																	6
Rubiaceae	Msph	Cg	Bm	Gilb	Méso	Ballo	Pausinystalia macroceras (K. Schum) Pierre	1					1															2
Rubiaceae	Mcph	pan	Bm/sm	Gilb	Méso	Sarco	Psydrax arnoldianum (De Willd. et Th.Dur.) Hepper	1	2	9		16	1															29
Rubiaceae	Mcph	G	Bm	Gilb	Méso	Sarco	Rothmannia hispida (K. Schum) Fagerlind	8	4		1		8															21
Rubiaceae	Msph	Cg	Bm	Gilb	Méso	Sarco	Rothmannia lujae (De Wild.) Keay	9		15	5	1	9				1	1		1		2	1		1		1	47
Rubiaceae	Mcph	G-Sz	Bm	Gilb	Méso	Sarco	Rothmannia whitfieldii (Lind.) Dandy	1					1															2

Flacourtiace ae	Msph	G	Bm	Gilb	Méso	Ballo	Scottellia coreacea A. Chev.	5	2			1	5													13
Flacourtiace ae	Mcph	G	Bm	Gilb	Méso	Ballo	Scottellia minfiensis Gilg.		1	3																4
Leguminosae	Msph	Cg	Bm	Gilb	Lepto	Baro	Tessmania anomala (Mich.) Harms		3																	3
Leguminosae	Msph	Cg	Bm	Gilb	Méso	Ballo	Tetraberlinia bifoliolata (harms) Hauman		2	1																3
Meliaceae	Mcph	Cg	Bm/Sm	Gilb	Méso	Ballo	Trichilia welwitschii C.DC.	4	2	1			4				2	1	1		1					16
Annonaceae	Mcph	Cg	Bm	Gilb	Méso	Sarco	Uvariastrum pynaertii De Wild.				1															1
Annonaceae	Msph	Cg	Bm	Gilb	Méso	Ballo	Xylopia staudtii Engl.	1	1	1		6	1													10
Tiliaceae	Mcph	G	Bm	Gilb	Lepto	Sarco	Grewia coriacea Mast.	2	5	11	18		2	5	2	1	1					1			1	49
Tiliaceae	Mcph	Cg	Bm/Sm	Gilb	Méso	Baro	Desplatsia dewevrei De wild. et Th. Dur	8	2			4	8											1		23
Garcinietalia	Noumi 1																									
Euphorbiace ae	Mcph	G	Sm	Gar	Méso	Sarco	Antidesma venosum Tul.				3	1											1			5
Rubiaceae	Mcph	Cg	Sm	Gar	Méso	Sarco	Aulacocalyx caudata Hook. f.		10	9	28	10														57
Rubiaceae	Mcph	Cg	Sm	Gar	Méso	Sarco	Aulacocalyx jasmiflora Hook. f.	30	33	36	5	32	18													154
Rubiaceae	Mcph	Cg	Sm	Gar	Méso	Sarco	Aulacocalyx talbotii (Wernham) Keay					5	12													17
Clusiaceae	Msph	G	Sm	Gar	Méso	Sarco	Allanblackia gabonensis (Pellegr.) Bamps	13	36	57	34	39	13													192
Lauraceae	Mcph	Cg	Sm	Gar	Méso	Sarco	Beilschmiedia obscura (stapf) Engl. et A.		1	12		5														18
Sapotaceae	Msph	G-Sz	Sm	Gar	Méso	Sarco	Aningeria altissima (A. chev.) Aubr. et Peller.	3	8				3													14
Cyatheaceae	Nnph	G	Sm/ Mi	Gar	Lepto	$\begin{array}{\|l} \hline \text { Sclér } \\ \text { o } \\ \hline \end{array}$	Cyathea camerooniana Hook. f		8	9		2														19
Cyatheaceae	Nnph	G	Sm/ Mi	Gar	Lepto	$\begin{array}{\|l} \hline \text { Sclér } \\ \text { o } \\ \hline \end{array}$	Cyathea manniana Hook. f.		7			1														8
Sterculiaceae	Msph	Aam	Sm	Gar	Méso	Sarco	Cola verticillata (Thonn.) stapf ex A. chev		13	10	9	51														83
Leguminosae	Msph	Cg	Sm	Gar	Méso	Sarco	Erythrina mildbraedii Harms	4	2	11			4													21
Euphorbiace ae	Mcph	G	Mi	Gar	Méso	Sarco	Erythrococca africana (Baill.) Prain			11	2	3														16
Clusiaceae	Mcph	Cg	Sm/Mi	Gar	Méso	Sarco	Garcinia mannii Oliv.		1		4									1	1					7
Clusiaceae	Mcph	At	Sm/Mi	Gar	Méso	Sarco	Garcinia smeathmannii Oliv.	10	12	29	11	16	10													88
Meliaceae	Msph	Cg	Sm	Gar	Méso	Sarco	Leplaea mayombensis (Under.) Alst.	10		11	12		10													43
Menispermac eae	Nnph	Cg	Sm	Gar	Macro	Sarco	Penianthus longifolius Miers		11	1	2															14
Cecropiaceae	Mcph	G	Sm	Gar	Macro	Sarco	Myrianthus libericus P . Beauv.		4	3		12			1	1	1									22

Euphorbiace ae	Msph	G	Bm	Mus	Méso	Sarco	Ricinodendron heudelotii (Baill.) Pierre ex pax .	3	1				3				1		1									9
Apocynaceae	Msph	G	Bm	Mus	Macro	Sarco	Tabernaemontana crassa Benth.	25	25	5	35	52	25						1	1	1	2	2	1		2	1	178
Moraceae	Msph	G	Bm	Mus	Méso	Sarco	Trilepisium madagascariensis DC.	12	4		18		12															46
Apocynaceae	Mcph	Cg	Bm	Mus	Méso	Sarco	Voacanga africana Stapf	1					1															2
Apocynaceae	Mcph	At	Bm	Mus	Méso	Sarco	Voacanga braeteata Stapf		3		10	4																17
Pterygotetalia Lebrun \&Gilbert 1954																												
Burseraceae	Msph	Cg	Bm/Sm	$\begin{array}{\|l} \hline \text { Pter } \\ \mathrm{y} \\ \hline \end{array}$	Méso	Sarco	Canarium schweinfurthii Engl.		5		7	1									1							14
Rutaceae	Msph	G	Bm/Sm	$\begin{array}{\|l\|} \hline \text { Pter } \\ \mathrm{y} \\ \hline \end{array}$	Méso	Baro	Zanthoxylum gillettii De Willd.		2	8		4																14
Rutaceae	Msph	G	Bm/Sm	$\begin{aligned} & \text { Pter } \\ & \mathrm{y} \\ & \hline \end{aligned}$	Méso	Baro	Zanthoxylum tessmannii (Engl.) R. Let.	2	1	2		4	2			1												12
Meliaceae	Msph	G	Bm/Sm	$\begin{aligned} & \text { Pter } \\ & \mathrm{y} \\ & \hline \end{aligned}$	Méso	Ballo	Khaya anthotheca (welw.) C. DC.		1		4																	5
Euphorbiace ae	Msph	At	Bm/Sm	$\begin{array}{\|l\|} \hline \text { Pter } \\ \mathrm{y} \\ \hline \end{array}$	Méso	Ballo	Margaritaria discoidea (Benth) K. Schum.		3																			3
Sterculiaceae	Msph	G	Bm/Sm	$\begin{array}{\|l\|} \hline \text { Pter } \\ \mathrm{y} \\ \hline \end{array}$	Macro	Ptéro	Pterygota macrocarpa K. Schum.		1	17																		18
Meliaceae	Mcph	G	Bm	Pter y	Méso	Ballo	Turraeanthus africanus (Welw. ex DC.)	5	11	7	2	17	5	1	1	2					2					1		54
Euphorbiace ae	Msph	G	Bm	$\begin{aligned} & \text { Pter } \\ & \mathrm{y} \\ & \hline \end{aligned}$	Méso	Sarco	Uapaca togoensis Pax et Engl.				1																	1
Mitragynetea Schmitz 1963																												
Annonaceae	Msph	G	Bm	Mit	Méso	Sarco	Cleistopholis patens (Benth.) Engl. et Diels	5	4	2	1	1	5			1												19
$\begin{aligned} & \text { Myristicacea } \\ & e \end{aligned}$	Msph	G	Bm	Mit	Méso	Sarco	Coelocaryon preussii Warb.	33					33				4	1	3	4	1	2						81
Clusiaceae	Msph	Pan	Bm	Mit	Méso	Sarco	Symphonia globulifera L. f.		5		3	8													1			17
Sapotaceae	Mcph	Cg	Bm	Mit	Méso	Sarco	Synsepalum dulcificum Schum. etThonn.		1	9	1	12																23
Delliniaceae	Phgr	At	Bm	Mit	Méso	Ptéro	Tetracera alnifolia Willd.		1																			1
Moraceae	Msph	At	Bm	Mit	Méso	Sarco	Treculia africana Decne.		2		13	9																24
Araceae	Mcph	Pal	$\begin{array}{\|l} \hline \mathrm{Bm} / \mathrm{S} \\ \mathrm{~m} \end{array}$	Mit	Méga	Sarco	Elaeis guineensis Jacq.		1																			1
Moraceae	Mcph	G	Bm	Mit	Méso	Sarco	Ficus mucuso Ficalho		3	1																		4
Anacardiace ae	Msph	Am	Bm	Mit	Méso	Ptéro	Pseudospondias microcarpa(A. Rich.) Engl.	1			1		1	1	1													5
Sterculiaceae	Msph	Pra	Bm	Mit	Méso	Ballo	Sterculia tragacantha Lindl.	2			2	17	2			1												24
Ficalhoeto-PodocarrpetaliaLebrun \&Gilbert 1954																												
Meliaceae	Msph	G	Mi	Fic	Méso	Sarco	Carapa grandiflora (Pax) Hutch	3					3															6
Melastomata ceae	Mcph	G-Sz	Mi	Fic	Méso	Sarco	Memecylon polyanthemos Hook. f.	1					1															2

Euphorbiace ae	Msph	G-sz	Mi	Fic	Méso	Sarco	$\begin{aligned} & \text { Sapiumellipticum (Hochst.) } \\ & \text { Pax } \\ & \hline \end{aligned}$				1																		1
Oleo-Jasminetalia Lebrun \& Gilbert 1954																													
Leguminosae	Phgr	G	Sm	$\begin{aligned} & \hline \text { Ole } \\ & \mathrm{o} \end{aligned}$	lepto	Ballo	Acacia pennata (L.) Willd.	1	1	3		12	1																18
Sapindaceae	Msph	At	Sm	$\begin{aligned} & \hline \text { Ole } \\ & \mathrm{o} \\ & \hline \end{aligned}$	Méso	$\begin{aligned} & \text { Sclér } \\ & \text { o } \\ & \hline \end{aligned}$	Allophylus africanus P . Beauv.	5					5																10
Hyparrhenietea Schmitz 1963																													
Leguminosae	Mcph	Aam	Bm	Hyp ar	Méso	Ptéro	Entada gigas (Linn.) Fawcett et Rendle	13	1		1	2	13																30
Polyscietalia fulvae Lebrun \& Gilbert 1954																													
Alangiaceae	Msph	Pal	Mi	Pol	Macro	Baro	Alangium chinense (Lour.) Harms		10	12	4	2																	28
Indéterminé																													
Euphorbiace ae	Mcph	At	Ind	Ind	Méso	Sarco	Antidesma sp.			1		17																	18
								$\begin{aligned} & \hline 69 \\ & 2 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 66 \\ 4 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 74 \\ 3 \\ \hline \end{array}$	$\begin{aligned} & \hline 64 \\ & 5 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 81 \\ 8 \\ \hline \end{array}$	$\begin{aligned} & 69 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 5 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 1 \\ 3 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 2 \\ 1 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 3 \\ 1 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 1 \\ 6 \\ \hline \end{array}$	$\begin{aligned} & 2 \\ & 0 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 2 \\ 0 \\ \hline \end{array}$	$\begin{aligned} & 1 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 1 \\ 4 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 2 \\ 0 \\ \hline \end{array}$	5	$\begin{array}{\|l\|} \hline 1 \\ 8 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 1 \\ 8 \\ \hline \end{array}$	$\begin{aligned} & \hline 1 \\ & 5 \\ & \hline \end{aligned}$	4519

Madiapevo et al., J. Appl. Biosci. Vol: 190, 2023 Characterization of the vegetation of the submontane forest of the kala massif in Cameroon

