

Spatial distribution of the piscivorous predator *Varanus niloticus* for efficient management of fish farms in the Republic of Bénin

KASSA Parfait¹, BIO BANGANA Abdoul-Sahabi¹, KPOGUE GANGBAZO Diane Nathalie Sènami¹, OROU BATA Ibrahim¹ and AGADJIHOUEDE Hyppolite^{1,2,3}

¹Aquaculture school (EAq), National University of Agriculture (UNA), Kétou, Bénin Republic,

²School of Rural Engineering (EGR), National University of Agriculture (UNA), Kétou, Bénin Republic

³Faculty of Agronomic Sciences (FSA), University of Abomey-Calavi (UAC), Abomey-Calavi, Bénin Republic.

*Corresponding author: parfaitos2007@yahoo.fr

Submitted 19/10/2025, Published online on 31/12/2025 in the <https://www.m.elewa.org/journals/journal-of-applied-biosciences-about-jab/> <https://doi.org/10.35759/JABs.215.3>

ABSTRACT

Objectives: Aquaculture in Bénin suffers economic losses from the Nile monitor lizard, *Varanus niloticus*. This study aimed to map the spatial distribution of *V. niloticus* in Southern Bénin and identify the key environmental factors influencing its abundance to guide targeted control strategies.

Methodology and Results: Using field surveys across 39 communes and spatial statistics, the predator's distribution pattern was analysed. The relationship between abundance and environmental variables was modelled using linear regression. Results revealed a significant spatial cluster of high *V. niloticus* abundance in the southeastern part of Bénin. A single-variable model using mean temperature explained a high proportion of the variance in abundance ($R^2 = 0.854$). The prediction map shows a gradient of decreasing abundance from the warm southeast to the cooler northwest. Validation with reserved field data confirmed a strong correlation ($r = 0.88$) between predicted and observed values.

Conclusions and application of findings: This study conclusively identifies mean temperature as the primary driver of the Nile monitor lizard (*Varanus niloticus*) distribution in Southern Bénin's aquaculture zones. This finding enables the creation of a definitive Predator Risk Map, pinpointing the warmer southeastern region as a high-risk hotspot. These results provide a scientific basis for a paradigm shift in management, moving from uniform, often ineffective, control to a targeted and cost-efficient strategy. Resources for mitigation (e.g., fencing subsidies, technical support) can now be strategically prioritized for high-risk areas, maximizing impact. Farmers in these zones can be proactively advised to implement stronger protective measures. Meanwhile, new aquaculture development can be encouraged in lower-risk zones. This data-driven approach directly helps reduce economic losses, safeguards investments, and enhances the overall sustainability and profitability of Bénin's vital aquaculture sector by focusing efforts where they are most needed.

Keywords: Aquaculture, Pest Management, Spatial Ecology, Nile Monitor Lizard, West Africa.